Всего на сайте:
282 тыс. 988 статей

Главная | Химия

Адсорбция твердым веществом  Просмотрен 15

 

При контакте твердого тела с газом или жидкостью происходит адсорбция − поглощение веществ поверхностью фазы. Твердое вещество с большой удельной поверхностью (например, микропористые тела) называется адсорбентом (AD). Поглощаемое вещество, находящееся в газовой или жидкой фазе, называется адсорбтивом (S), а после того, как оно перешло в адсорбированное состояние, − адсорбатом (ADS) (рис. 2.3). Обратный процесс перехода вещества из поверхностного слоя в объем газовой или жидкой фазы называется десорбцией.

  
 

 

Рис. 2.3. Схема процесса адсорбции

По природе сил, удерживающих молекулы адсорбтива на поверхности твердого тела, адсорбция в общем случае делится на два основных типа: физическая адсорбция и химическая (хемо-сорбция).

Физическая адсорбция определяется силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса). Основной вклад вносят дисперсионные силы, не зависящие от природы адсорбируемых молекул, определенную роль могут играть ориентационные и индукционные силы. Энергия взаимодействия сравнительно небольшая – 8…25 кДж/моль. Силы физической адсорбции обладают свойством дальнодействия, хотя быстро убывают с расстоянием (~1/r6). Физическая адсорбция – процесс самопроизвольный (ΔG < 0), экзотермический (ΔH < 0), с уменьшением энтропии (ΔS < 0), так как сопровождается упорядочение системы. Поэтому количество сорбируемого вещества при физической адсорбции растет с уменьшением температуры. Соответственно десорбция происходит при относительно высоких температурах.

Химическая адсорбция (хемосорбция) связана с образованием сильных химических связей. При поглощении вещества поверхностью перераспределяется электронная плотность с образованием химической связи, т.е. на поверхности раздела фаз происходит химическая реакция между сорбентом и сорбтивом. При хемосорбции адсорбированное вещество локализовано на поверхности адсорбента. Энергия взаимодействия примерно на порядок выше, чем при физической сорбции. Химическая сорбция может эффективно протекать при высоких температурах. Поглотительная способность сильно меняется в зависимости от природы взаимодействующих веществ.

Сорбционную способность адсорбента характеризует величина, равная количеству адсорбата (моль, г и др.), поглощенного еди-ницей поверхности (поверхностная концентрация). Она называется адсорбцией (Г) и измеряется соответственно в моль/см2; г/см2 и др. Удельная адсорбция − количество адсорбата, сорбируемого единицей массы адсорбента (моль/г; экв/г и др.).

Адсорбция в состоянии равновесия зависит от природы
сорбента и сорбируемого вещества. Кроме того, она зависит от молярной концентрации сорбируемого вещества (C) или парциального давления сорбируемого газа (р), а также от темпера-
туры (T):

Г = f(C, T); Г = f(p, T).

 

Для процесса, осуществляемого при постоянной температуре, зависимость Г = f(C) называется изотермой адсорбции.

Одной из моделей, описывающих процесс адсорбции, является модель мономолекулярной адсорбции Ленгмюра, основанная на следующих предположениях:

– молекулы адсорбата заполняют поверхность адсорбента в один слой, образуя мономолекулярный слой (монослой);

– поверхность сорбента однородна;

– сорбированные молекулы неподвижны.

Процесс адсорбции можно представить как квазихимическую реакцию между молекулами сорбируемого вещества, концентрация которого равна C, и центрами сорбции AD на поверхности адсорбента:

S + AD ↔ ADS.

 

Состояние равновесия реакции характеризуется константой равновесия, которая в данном случае называется константой сорбции (Кс).

Тогда:

– концентрация сорбируемого вещества на поверхности сорбента равна адсорбции − [ADS] = Г(С);

– концентрация центров сорбции на поверхности − Г¥, в случае сорбции в один слой она соответствует максимальному числу молекул, которые могут быть сорбированы (емкость монослоя);

– число свободных мест на поверхности сорбента − [AD] =
= Г¥ − Г(С);

– концентрация сорбируемого вещества в объеме жидкости или газа −[S] = C.

Следовательно, и, соответственно,

 

; .

Данное уравнение получило название изотерма адсорбции Ленгмюра. Она представляет собой зависимость количества вещества, поглощенного адсорбентом при постоянной температуре, от концентрации в жидкости (С) или парциального давления в газе (p) (рис. 2.4).

При малых концентрациях (КсС << 1) количество вещества, поглощенного сорбентом, растет линейно с ростом концентрации. При больших концентрациях (КсС >> 1), Г(С) = Г¥ поверхность сорбента полно-стью занята молекулами сорбируемого вещества. Количество поглощенного вещества равно Г¥ и не зависит от концентрации сорбируемого вещества в объеме жидкости или газа. Величина Г¥ называется сорбционной емкостью и характеризует максимально возможное количество вещества, которое может поглотить сорбент.

При сорбции паров вещества пористыми адсорбентами процесс мономолекулярной адсорбции может перейти в капиллярную конденсацию. На первой стадии молекулы пара заполняют поверхность стенок пор (капилляров) в один слой, затем число слоев возрастает, образуется жидкая фаза, которая заполняет объем пор. Изотерма адсорбции в этом случае имеет S-образную форму. При малых давлениях кривая представляет собой изотерму адсорбции Ленгмюра, а при приближении к величине предельной сорбции резко поднимается вверх, процесс переходит в капиллярную конденсацию (рис. 2.5).

Твердые пористые адсорбен-ты широко используют в различных областях для удаления из газов и жидкостей нежелательных примесей − очистка веществ. Например, в фильтрующем противогазе происходит удаление ядовитых газов из воздуха.

Приведем примеры пористых адсорбентов.

Активные угли − пористые углеродные адсорбенты, которые получают путем термической обработки органического сырья (например, древесные материалы) без доступа воздуха с последующей физико-химической обработкой для создания требуемой микропористой структуры. Поверхность угольных сорбентов электронейтральна, и адсорбция определяется в основном дисперсионными силами взаимодействия. Активные угли хорошо поглощают неполярные вещества из газовой фазы и водных растворов. Обладают удельной поверхностью до 1000 м2/г.

В зависимости от назначения угольные сорбенты подразделяют на газовые, рекуперационные и осветляющие угли. Газовые угли предназначены для улавливания плохо сорбирующихся веществ, содержащихся в газах в небольшой концентрации, а также для очистки воды от примесей веществ с небольшим размером молекул, в частности дезодорация питьевой воды. Рекуперационные угли предназначены для улавливания паров органических растворителей из воздуха. Осветляющие угли служат для поглощения относительно крупных молекул и микросуспензий из жидкой среды, в частности используются для фармацевтических целей и для осветления пищевых продуктов.

Силикагель − минеральный адсорбент (гидратированный аморфный кремнезем ), образованный сферическими частицами размером 10…100 нм, которые связаны между собой, образуя жесткий кремнекислородный каркас. Удельная поверхность 300…700 м2/г. Адсорбционные свойства силикагеля в значительной степени определяются поверхностными группами Si-OH. Обычно его используют для поглощения из газов паров воды (осушитель) и органических растворителей, для адсорбционной очистки неполярных жидкостей.

Алюмогель − активная окись алюминия, которую получают прокаливанием гидроокиси алюминия ( ). Он является гидрофильным адсорбентом с сильно развитой пористой структурой. Используется для осушки газов, для очистки трансформаторных масел, газов и жидкостей, содержащих соединения фтора.

Цеолиты – кристаллические каркасные алюмосиликаты,
содержащие в своем составе ионы щелочных и щелочнозе-мельных металлов ( ). Основным «строительным блоком» для создания различных форм природных и синтетических цеолитов служит кристаллическая структура, представляющая собой кубооктаэдр, объем которого и является адсорбционной полостью. На шестиугольных гранях располагаются «входные окна» в адсорбционные полости, размер которых строго фиксирован и зависит от параметров кристаллической решетки. В зависимости от марки синтетических цеолитов диаметр входных окон может быть от 2 до 15 Å. Поэтому цеолиты могут использоваться для разделения веществ не только на основе избирательной адсорбции, но и на основе разницы в размере молекул − молекулярные сита.

П р и м е ч а н и е. Адсорбция различных веществ одним и тем же сорбентом неодинакова. На этом свойстве основан метод разделения смеси газов, паров, жидкостей или растворенных веществ, получивший название хроматография. Пропуская смесь газов или раствор (подвижная фаза) через неподвижный слой адсорбента, можно разделить смеси на индивидуальные вещества.

 

Предыдущая статья:Адсорбция Следующая статья:Адсорбция твердым веществом из раствора электролита
page speed (0.0146 sec, direct)