Всего на сайте:
282 тыс. 988 статей

Главная | Электроника

Метод узловых потенциалов  Просмотрен 18

 

Метод узловых потенциалов основан на применении первого закона Кирхгофа.

Метод узловых потенциалов целесообразно применять, когда число узлов в схеме без единицы меньше числа независимых контуров. Если число узлов обозначить n, а число независимых контуров К, то условием целесообразности применения будет неравенство

n – 1 < K.

Токораспределение в схеме не изменится, если потенциал одного из узлов принять равным нулю. Говорят, что узел с потенциалом φ=0 «заземлен» или подключен к «земле». Такой узел ещетназывают базисным.

Таким образом, любой один узел (но только один) можно заземлить, уменьшив тем самым на один число узлов и, соответственно, требуемое число уравнений системы для определения потенциалов в узлах схемы.

Рационально заземлять узел, в котором сходится наибольшее число ветвей. В этом случае упрощаются выражения, описывающие собственные проводимости оставшихся узлов.

Вспомним, что проводимостью называется величина, обратная сопротивлению

.

Единицей проводимости является Сименс (См).

Собственной проводимостью узла называют сумму проводимостей всех ветвей, сходящихся в этот узел. Обозначим собственную проводимость i-го узла Gi.

Проводимость ветвей между i-м и j-м узлами называют общей проводимостью между i-м и j-м узлами. Обозначим ее Gij.

Пронумеруем узлы числами 0, 1, 2, 3, … Узел с номером 0 заземлен. Для нахождения потентциалов в остальных узлах необходимо составить n-1 уравнений.

Правила составления уравнений следующие.

1. В левой части уравнения пишут сумму всех произведений потенциалов каждого узла на соответствующую проводимость, причем потенциал φi i-го узла умножается на собственную проводимость Gi и это произведение берут со знаком «+», а потенциалы φj любого j-го узла из оставшихся узлов умножают на общую проводимость Gij между i-м и j-м узлами и эти произведения берут со знаком « – ».

ВНИМАНИЕ! Если к узлу подходит ветвь с источником тока, то проводимость этой ветви в расчете собственной проводимости узла не участвует.

2. В правой части уравнения пишут сумму алгебраической суммы токов источников тока в ветвях, примыкающих к i-му узлу, и алгебраической суммы произведений ЭДС источников напряжения, имеющихся в ветви, примыкающей к узлу, на проводимость этой ветви. Есди ЭДС источника напряжения или ток источника тока направлены к узлу, то слагаемые берутся со знаком «+», если от узла, то со знаком « – ».

Если в какой-либо ветви схемы нет источника напряжения или тока, то такая ветвь исключается из процесса формирования правой части уравнения.

В качестве примера составим систему уравнений для расчета методом узловых потенциалов схемы с четырьмя узлами, т.е. n=4. Один узел будет заземлен, для оставшихся трех узлов требуется составить три уравнения:

 

, (4.5)

где означает, что учитываются все ветви, подходящие к i-му узлу, при условии, что в них есть источники ЭДС или тока.

Систему (4.5) решают относительно потенциалов φi каждого узла.

Токи в ветвях, расположенных меду i-м узлом и «землей» определяют по закону Ома, разделив разность потенциала i-го узла φi и алгебраической суммы ЭДС источников напряжения, имеющихся в ветви, на сумму сопротивлений в этой ветви:

. (4.6)

За положительное направление тока принимают направление от узла к «земле». Если при расчете по (4.6) получили значение тока со знаком « – », то это значит, что в реальной схеме ток течет в противоположном направлении.

Ток в ветви, расположенной меду i-м и j-м узлами тоже определяют по закону Ома, разделив разность потенциалов между узлами на суммарное сопротивление ветви:

. (4.7)

Так же, если при расчете по (4.7) получили значение тока со знаком « – », то это значит, что в реальной схеме ток течет в противоположном направлении.

 

Предыдущая статья:Пример расчета токов в ветвях электрической цепи методом контурных токов Следующая статья:Пример расчета токов в ветвях электрической цепи методом узловых потенциалов
page speed (0.0121 sec, direct)