Всего на сайте:
282 тыс. 988 статей

Главная | Материаловедение

Поверхностное упрочнение стали  Просмотрен 27

Поверхностная закалка состоит в нагреве поверхностного слоя стальных деталей до аустенитного состояния и быстрого охлаждения с целью получения высокой твердости и прочности в поверхностном слое в сочетании с вязкой сердцевиной. Существуют различные способы нагрева поверхности под закалку — в расплавленных металлах или солях, пламенем газовой горелки, лазерным излучением, током высокой частоты. Последний способ получил наибольшее распространение в промышленности.

 

При нагреве токами высокой частотызакаливаемую деталь помещают внутри индуктора, представляющего собой медные трубки с циркулирующей внутри для охлаждения водой. Форма индуктора соответствует внешней форме детали. Через индуктор пропускают электрический ток (частотой 500 Гц-10 МГц). При этом возникает электромагнитное поле, которое индуцирует вихревые токи, нагревающие поверхность детали. Глубина нагретого слоя уменьшается с увеличением частоты тока и увеличивается с возрастанием продолжительности нагрева. Регулируя частоту и продолжительность, можно получить необходимую глубину закаленного слоя, находящуюся в пределах 1-10 мм.

Преимуществами закалки токами высокой частоты являются регулируемая глубина закаленного слоя, высокая производительность (нагрев одной детали длится 10 с), возможность автоматизации, отсутствие окалинообразования. Недостаток — высокая стоимость индуктора, который является индивидуальным для каждой детали. Поэтому этот вид закалки применим, в основном, к крупносерийному и массовому производству.

Перспективный метод поверхностной закалки стальных деталей сложной формы — лазерная обработка. Благодаря высокой плотности энергии в луче лазера возможен быстрый нагрев очень тонкого слоя металла. Последующий быстрый отвод тепла в объем металла приводит к закалке поверхностного слоя с приданием ему высокой твердости и износостойкости.

Химико-термическая обработка — это процесс изменения химического состава, структуры и свойств поверхности стальных деталей за счет насыщения ее различными химическими элементами. При этом достигается значительное повышение твердости и износостойкости поверхности деталей при сохранении вязкой сердцевины. К видам химико-термической обработки относятся цементация, азотирование, цианирование и др.

Цементация — это процесс насыщения поверхностного слоя стальных деталей углеродом. Цементация производится путем нагрева стальных деталей при 880-950°С в углеродосодержащей среде, называемой карбюризатором. Различают два основных вида цементации — газовую и твердую. Газовая цементация проводится в газе, содержащем метан СН4 и оксид углерода СО. Твердая цементация проводится в стальных ящиках, куда укладываются детали вперемешку с карбюризатором. Карбюризатором служит порошок древесного угля с добавкой солей Na2C03 или ВаС03.

Цементации подвергают стали с низким содержанием углерода (0,1-0,3%). В результате на поверхности концентрация углерода возрастает до 1,0-1,2%. Толщина цементованного слоя составляет 1-2,5 мм.

Цементацией достигается только выгодное распределение углерода по сечению детали. Высокая твердость и износостойкость поверхности получается после закалки, которая обязательно проводится после цементации. Затем следует низкий отпуск. После этого твердость поверхности составляет HRC 60.

Азотированием называется процесс насыщения поверхности стали азотом. При этом повышаются не только твердость и износостойкость, но и коррозионная стойкость. Проводится азотирование при температуре 500-600°С в среде аммиака NH, в течение длительного времени (до 60 ч.) Аммиак при высокой температуре разлагается с образованием активного атомарного азота, который и взаимодействует с металлом. Твердость стали повышается за счет образования нитридов легирующих элементов. Поэтому азотированию подвергают только легированные стали. Наиболее сильно повышают твердость такие легирующие элементы, как хром, молибден, алюминий, ванадий. Глубина азотированного слоя составляет 0,3 — 0,6 мм, твердость поверхностного слоя по Виккерсу доходит до HV 1200 (при цементации HV 900).

К преимуществам азотирования перед цементацией следует отнести отсутствие необходимости в дополнительной термообработке, более высокую твердость и износостойкость, высокую коррозионную стойкость поверхности. Недостатками являются низкая скорость процесса и необходимость применения дорогих легированных сталей.

Цианирование (нитроцементация) — это процесс одновременного насыщения поверхности стали углеродом и азотом. Проводится цианирование в расплавах цианистых солей NaCN или KCN или в газовой среде, содержащей смесь метана СН4 и аммиака NH,. Различают низкотемпературное и высокотемпературное цианирование.

Низкотемпературное цианирование проводится при температуре 500-600°С. При этом преобладает насыщение азотом. Глубина цианирован-ного слоя составляет 0,2-0,5 мм, твердость поверхности — HV 1000.

При высокотемпературном цианировании температура составляет 800-950°С. Преобладает насыщение углеродом. Глубина поверхностного слоя составляет 0,6 — 2,0 мм. После высокотемпературного цианирования следует закалка с низким отпуском. Твердость после термообработки составляет HRC 60.

Поверхностное упрочнение пластическим деформированием основано на способности стали к наклепу при пластической деформации. Наиболее распространенными способами такого упрочнения поверхности является дробеструйная обработка и обработка поверхности роликами или шариками.

При дробеструйной обработке на поверхность детали из специальных дробеметов направляется поток стальной или чугунной дроби малого диаметра (0,5-1,5 мм). Удары концентрируются на весьма малых поверхностях, поэтому возникают очень большие местные давления. В результате повышается твердость и износостойкость обработанной поверхности. Кроме того, сглаживаются мелкие поверхностные дефекты. Глубина упрочненного слоя при дробеструйной обработке составляет около 0,7 мм.

Обкатка роликами производится с помощью специальных приспособлений на токарных станках. Помимо упрочнения, обкатка снижает шероховатость обрабатываемой поверхности. Глубина упрочненного слоя доходит до 15 мм.

5. ЛЕГИРОВАННЫЕ СТАЛИ

 

Легированной называют сталь, содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы.

Легированные стали имеют целый ряд преимуществ перед углеро­дистыми. Они имеют более высокие механические свойства, прежде всего, прочность. Легированные стали обеспечивают большую прокаливаемость, а также возможность получения структуры мартенсита при закалке в масле, что уменьшает опасность появления трещин и короб­ления деталей. С помощью легирования можно придать стали различ­ные специальные свойства (коррозионную стойкость, жаростойкость, жаропрочность, износостойкость, магнитные и электрические свойства).

Классификация сталей по различным признакам была рассмот­рена ранее (см. раздел 3.2) . Отметим только, что стали обыкновен­ного качества могут быть только углеродистыми, т.е. легированные стали, как минимум, являются качественными.

Маркируются легированные стали с помощью цифр и букв, ука­зывающих примерный химический состав стали. Первые цифры в марке показывают среднее содержание углерода в сотых долях про­цента. Далее показывается содержание легирующих элементов. Каж­дый элемент обозначается своей буквой: Η — никель, Г — марга­нец, Ц — цирконий, Τ — титан, X — хром, Д — медь, С — кремний, А — азот, К — кобальт, Ρ — бор, Π — фосфор, Φ — ванадий, Μ — молибден, Б — ниобий, В — вольфрам, Ю — алюминий. Цифры, идущие после буквы, указывают примерное содержание данного ле­гирующего элемента в процентах. При содержании элемента менее 1% цифра отсутствует. Например, сталь 12Х18Н10Т содержит при­близительно 0,12% углерода, 18% хрома, 10% никеля, менее 1% титана. Для некоторых групп сталей применяют другую маркировку, которая будет указана при рассмотрении этих сталей.

 

5.1. Конструкционные стали

 

Конструкционные стали идут на изготовление деталей машин, конструкций и сооружений. Они должны обеспечивать длительную и надежную работу деталей и конструкций в условиях эксплуатации. Поэтому основное требование к конструкционным сталям — комп­лекс высоких механических свойств.

Строительные стали содержат малые количества углерода (0,1-0,3%). Это объясняется тем, что детали строительных конструкций обычно соединяются сваркой. Низкое содержание углерода обеспе­чивает хорошую свариваемость.

В качестве строительных используются углеродистые стали Ст2 и СтЗ, имеющие предел текучести σ0,2= 240 МПа. В низколегирован­ных строительных сталях при содержании около 1,5% Μη и 0,7% Si предел текучести увеличивается до 360 МПа. К этим сталям относят­ся 14Г2, 17ГС, 14ХГС. Дополнительное легирование небольшими коли­чествами ванадия и ниобия (до 0,1%) повышает предел текучести до 450 МПа за счет уменьшения величины зерна. К сталям такого типа относятся 14Г2АФ, 17Г2АФБ.

Приведенные стали применяют для строительных конструкций, армирования железобетона, магистральных нефтепроводов и газо­проводов.

Цементуемые стали содержат 0,1-0,3% углерода. Они подверга­ются цементации, закалке и низкому отпуску. После этой обработки твердость поверхности составляет HRC 60, а сердцевины HRC 15 — 40. Упрочнение сердцевины в этих сталях тем сильнее, чем больше содержание легирующих элементов. В зависимости от степени уп­рочнения сердцевины цементуемые стали можно разделить на три группы.

К сталям с неупрочняемой сердцевиной относятся углеродистые цементуемые стали 10, 15, 20. Их сердцевина имеет феррито-перлитную структуру. Эти стали имеют высокую износостойкость, но малую прочность (σ = 400-500 МПа). Поэтому они применяются для малоответственных деталей небольших размеров.

К сталям со слабо упрочняемой сердцевиной относятся низколеги­рованные стали 15Х, 15ХР, 20ХН и др. Сердцевина имеет структуру бейнит. Эти стали имеют повышенную прочность (σв = 750-850 МПа).

К сталям с сильно упрочняемой сердцевиной относятся стали 20ХГР, 18ХГТ, 30ХГТ, 12ХНЗ, 18Х2Н4В и др. Серцевина имеет мартенситную структуру. Стали этой группы имеют высокую проч­ность (σв= 1200-1600 МПа) и применяются для крупных деталей, испытывающих значительные нагрузки.

Улучшаемые стали содержат 0,3-0,5% углерода и небольшое количество легирующих элементов (до 3-5%). Эти стали подверга­ются улучшению, состоящему из закалки в масле и высокого отпуска. После термообработки имеют структуру сорбита. Механические свой­ства разных марок улучшаемой стали в случае сквозной прокаливаемости близки (σв= 900-1200 МПа). Поэтому прокаливаемость оп­ределяет выбор стали. Чем больше легирующих элементов, тем выше прокаливаемость. Следовательно, чем больше сечение детали, тем более легированную сталь следует использовать. По прокаливаемости улучшаемые стали могут быть условно разбиты на пять групп.

В первую группу входят углеродистые стали 35, 40, 45, имеющие критический диаметр Dкр= 10 мм (см. раздел 4.2.). Эти стали под­вергаются нормализации вместо улучшения.

Ко второй группе относятся стали, легированные хромом 30Х, 40Х. Для них критический диаметр составляет Dкр= 15-20 мм.

Третью группу составляют хромистые стали, дополнительно ле­гированные еще одним двумя элементами (кроме никеля) 30ХМ, 40ХГ, 30ХГС и др. Для этих сталей Dкр= 20-30 мм.

Четвертая группа представлена хромоникелевыми сталями, со­держащими около 1% никеля: 40ХН, 40ХНМ и др. Их критический диаметр Dкр= 40 мм.

В пятую группу входят стали, легированные рядом элементов, причем содержание никеля доходит до 3-4%: 38ХНЗ, 38ХНЗМФ (Dкр=100 мм). Это лучшие марки улучшаемых сталей, хотя они сравнительно дороги.

Высокопрочные стали. Новейшая техника предъявляет высо­кие требования к прочности стали (σ= 1500-2500 МПа). Этим тре­бованиям соответствуют мартенситностареющие стали сочетаю­щие высокую прочность с достаточной вязкостью и пластичностью. Они представляют собой практически безуглеродистые (до 0,03% С) сплавы железа с никелем (17-26% Ni), дополнительно легированные титаном, алюминием, молибденом, ниобием и кобальтом. Широкое распространение получила сталь Н18К9М5Т. Она подвергается за­калке на воздухе с 800-850°С. Высокую прочность мартенситностареющие стали получают в результате старения, представляющего собой отпуск, производимый при температуре 450-500°С. В резуль­тате такой термообработки сталь Н18К9М5Т имеет предел прочно­сти σв = 2000 МПа.

Кроме упомянутой выше стали нашли применение стали Н12К8М3Г2 Μ10X11М2Т, Н12К8М4Г2 и другие. Мартенситностаре­ющие стали применяют в авиационной промышленности, в ракетной технике, судостроении и т. д. Они обладают хорошей свариваемостью и обрабатываемостью. Эти стали являются достаточно дорогостоящими.

Пружинные стали.В пружинах и рессорах используются толь­ко упругие свойства стали. Возникновение пластической деформа­ции в них недопустимо, поэтому высоких требований к пластичнос­ти и вязкости не предъявляется. Основное требование к пружинной стали — высокий предел упругости σ (см. раздел 1.2). Хорошие упругие свойства стали достигаются при повышенном содержании углерода (0,5-0,7%) и применении термообработки, состоящей из закалки и среднего отпуска при температуре 350-450°С. После та­кой термообработки сталь имеет троститную структуру.

Углеродистые пружинные стали (65, 70, 75) вследствие низкой прокаливаемости используются для пружин небольшого сечения. Они могут работать при температуре до 100° С. Стали, легированные кремнием и марганцем (60С2, 60СГ и др.) предназначены для боль­ших по размеру упругих элементов и обеспечивают их длительную и надежную работу. Для ответственных пружин применяют высокока­чественные стали легированные хромом и ванадием (50ХФА, 50ХГФА). Эти стали могут работать при температуре до 300° С. Из них изготавливают, например, рессоры легковых автомобилей.

Износостойкие стали способны сопротивляться процессу изна­шивания. Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к умень­шению их размеров (износу). Износостойкие стали можно разделить на три группы.

В первую группу входят стали, износостойкость которых дости­гается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке. Имеют струк­туру мартенсита или мартенсита с карбидными включениями. К этой группе относятся подшипниковые стали, из которых изготавливают­ся шарики и ролики подшипников качения.

Они маркируются бук­вами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1%.

Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода (-1,5%) и кремния (-1%), что повышает способность к графитизации. Эти стали подвергаются графитизирующему отжигу, который аналогичен отжигу ковкого чугуна (см. раздел 3.3.).

Третью группу составляют стали износостойкость которых дос­тигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110ΓΙ3. Она имеет невысокую твердость, которая при дей­ствии давления и ударов резко повышается, за счет чего и достигает­ся износостойкость. Эта сталь подвергается закалке от 1100°С в воде, после чего получает аустеннтную структуру. Плохо обрабаты­вается резанием, поэтому применяется в литом состоянии.

 

5.2. Стали со специальными свойствами

 

Коррозиониостойкие (нержавеющие) стали. Коррозией называет­ся разрушение металла под действием внешней агрессивной среды в результате ее химического или электрохимического воздействия. Раз­личают химическую коррозию, обусловленную воздействием на металл сухих газов и неэлектролитов (например, нефтепродуктов) и электро­химическую, возникающую под действием жидких электролитов или влажного воздуха. По характеру коррозионного разрушения различают сплошную и местную коррозию. Сплошная коррозия захватывает всю поверхность металла. Ее делят на равномерную и неравномерную в зависимости от того, одинаковая ли глубина коррозионного разруше­ния на разных участках. При местной коррозии поражения локальны.. В зависимости от степени локализации различают пятнистую, язвен­ную, точечную, межкристаллитную и др. виды местной коррозии.

Самый надежный способ защиты от коррозии — применение коррозионностойких сталей. Коррозионная стойкость достигается при введении в сталь элементов, образующих на ее поверхности тонкие и прочные оксидные пленки. Наилучший из этих элементов — хром. При введении в стапь 12-14% хрома она становится устойчивой про­тив коррозии в атмосфере, воде, ряде кислот, щелочей и солей. Ста­ли, содержащие меньшее количество хрома, подвержены коррозии точно так же, как и углеродистые стали. В технике применяют хроми­стые и хромоникелевые коррозиониостойкие стали.

Хромистые коррозиониостойкие стали могут содержать 13, 17 или 25-27% хрома. Стали марок 08X13, 12X13, 20X13 подвергают­ся закалке от 1000°С и отпуску при 600-700°С. Их применяют для изготовления деталей с повышенной пластичностью, работающих в слабоагрессивных средах. Стали 30X13, 40X13 подвергаются закал­ке и отпуску при 200-300°С. Из них изготавливают режущий, мери­тельный и хирургический инструмент.

Стати 12X17, 15X28 имеют более высокую коррозионную стой­кость. Подвергаются отжигу при температуре 700-780°С. Используются для оборудования заводов легкой и пищевой промышленности, труб, работающих в агрессивных средах, для кухонной посуды.

Хромоникелевые стали обычно содержат 18% хрома и 9-12% никеля (04Х18Н10, 12Х18Н10Т, 12Х18Н12Т и др.). Они имеют бо­лее высокую коррозионную стойкость по сравнению с хромистыми сталями, лучшие механические свойства, хорошо свариваются. Эти стали имеют аустенитную структуру. Их термообработка состоит из закалки от температуры 1100-1150°С в воде без отпуска.

Хромоникелевые стали склонны к межкристаллитной коррозии. Она быстро распространяется по границам зерен без заметных вне­шних признаков. Это происходит вследствие образования карбидов хрома по границам зерен, что приводит к уменьшению содержания хрома в поверхностном слое зерна. Чтобы карбиды хрома не обра­зовывались, надо либо использовать стали с пониженным содержа­нием углерода (до 0,04%), либо дополнительно легировать сталь ти­таном, связывающим углерод в карбид титана.

Используются хромоникелевые стали в пищевой и химической промышленности, в холодильной технике. Поскольку никель доро­гостоящий элемент, иногда его частично заменяют марганцем и ис­пользуют сталь 10Χ14Γ14Η4Τ.

 

Другие методы защиты от коррозии. Распространенным средством защиты от коррозии является нанесение на защищаемый металл раз­личных покрытий. Металлические покрытия наносятся различными способами. При погружении в расплавленный металл поверхность из­делия покрывается тонким и плотным слоем, затвердевающим после извлечения изделия. Этот способ применяется для нанесения покрытий цинком, оловом, свинцом и алюминием, температура плавления кото­рых ниже, чем у защищаемого металла. При диффузионной металлиза­ции изделие засыпают порошками алюминия, хрома, цинка и выдержи­вают при высокой температуре. При напылении поверхность изделия покрывают слоем расплавленного металла (цинка, алюминия, кадмия и др.) с помощью воздушной струи. При плакировании защищаемый ме­талл подвергают совместной прокатке с защищающим (алюминием, титаном, нержавеющей сталью). Гальванический способ нанесения по­крытий основан на осаждении под действием электрического тока тон­кого слоя защитного металла (хрома, никеля, меди, кадмия) при погру­жении защищаемого изделия в раствор электролита.

Неметаллические покрытия подразделяются на лакокрасочные и эмалевые, смоляные, покрытия пленочными полимерными мате­риалами, резиной, смазочными материалами, керамические покры­тия и др. Покрытия, получаемые химической и электрохимической обработкой, превращают поверхностный слой изделия в химическое соединение, образующее сплошную защитную пленку. Наибольшее распространение имеют оксидные и фосфатные защитные пленки.

Протекторная защита основана на подсоединении к защищае­мому изделию протектора с более отрицательным электрохимичес­ким потенциалом. В афессивной среде протектор будет являться анодом и разрушаться, а защищаемое изделие — катодом и разру­шаться не будет.

Для уменьшения агрессивности окружающей среды в нее вво­дят добавки, называемые ингибиторами коррозии. Они значитель­но снижают скорость коррозии. Условием использования ингиби­торов является эксплуатация изделия в замкнутой среде постоянного состава.

Жаростойкиеи жаропрочные стали. Под жаростойкими сталя­ми понимают стали, обладающие стойкостью против химического разрушения поверхности при высокой температуре (свыше 550°С) . При нагреве стапи происходит окисление поверхности и образуется оксидная пленка (окалина). Дальнейшее окисление определяется ско­ростью проникновения атомов кислорода через эту апенку. Через пленку оксидов железа они проникают очень легко. Для повышения жаростойкости сталь легируют элементами, образующими плотную пленку, через которую атомы кислорода не проникают. Эти элемен­ты — хром, алюминий, кремний. Так как апюминий и кремний по­вышают хрупкость стати, чаще всего применяют хром. Чем больше его содержание, тем более жаропрочной является сталь. Сталь 15X5 выдерживает до 600°С, 40Х9С2 — до 800°С, рассмотренные ранее 12X17 — до 900°С и 15X28 — до 1050°С.

Жаропрочные материалы способны противостоять механическим нагрузкам при высоких температурах. Жаропрочные стали класси­фицируются по структуре.

Перлитные стали содержат малое количество углерода, легиру­ются хромом молибденом, ванадием (12ХМ, 12Х1МФ). Используют для изготовления труб, паропроводов и др. деталей, длительно рабо­тающих при температуре 500-550°С.

Мартенситные стали в большом количестве легированы хро­мом (15X11МФ, 15Х12ВНМФ). Они используются для деталей энер­гетического оборудования, длительно работающего при температу­ре 600-620°С. Особую группу мартенситных сталей составляют сильхромы, применяемые для клапанов двигателей внутреннего


сгорания. Они дополнительно легированы кремнием (40Х9С2, 40X10С2М).

Аустенитные стали легированы большим количеством хрома и никеля а также другими элементами (09Х14Н16Б, 09Х14Н19В2БР). Из этих сталей изготавливают детали газовых турбин, работающих при температуре 600-700°С.

Для работы при более высоких температурах (700-900°С) слу­жат сплавы на основе никеля, называемые нимониками. Примером нимоника является сплав ХН77ТЮР, содержащий кроме никеля приблизительно 20% Сr, 2,5% Ti, 1% А1.

Дпя работы при температурах свыше 1000°С используют тугоп­лавкие металлы и их сплавы. Это — хром, ниобий, молибден, тан­тал, вольфрам. Они используются в атомной энергетике и в косми­ческой технике.

Температуры 1500-1700°С выдерживают жаропрочные керами­ческие материалы на основе карбида и нитрида кремния.

 

5.3. Инструментальные стали и сплавы

 

По назначению инструментальные стали делятся на стали для ре­жущего, измерительного и штампового инструмента. Кроме сталей, для изготовления режущего инструмента применяются металлокерамические твердые сплавы и минералокерамические материалы. Режу­щий инструмент работает в сложных условиях, подвержен интенсив­ному износу, при работе часто разогревается. Поэтому материал для изготовления режущего инструмента должен обладать высокой твер­достью, износостойкостью и теплостойкостью. Теплостойкость — это способность сохранять высокую твердость и режущие свойства при длительном нагреве.

Углеродистые инструментальные стали содержат 0,7-1,3% уг-
лерода. Они маркируются буквой У и цифрой, Показывающих со-
держание углерода в десятых долях процента (У7, У8, У9, У13).
Буква А в конце марки Показывает, что стапь высококачественная (У7А,
У8А,У1 ЗА). Предварительная термообработка этих сталей — отжиг
на зернистый перлит, окончательная — закалка в воде или растворе
соли и низкий отпуск. После этого структура стали представляет со-
бой мартенсит с включениями зернистого цементита. Твердость ле-
жит в интервале HRC 56-64;

Для углеродистых инструментальных сталей характерны низкая теплостойкость (до 2Ш°С) и низкая прокаливаемость (до 10-12 мм). Однако вязкая незакаленная сердцевина повышает устойчивость инструмента против поломок при вибрациях и ударах. Кроме того, эти стали достаточно дешевы и в незакаленном состоянии сами хо­рошо обрабатываются.

Стали У7-У9 применяются для изготовления инструмента, ис­пытывающего ударные нагрузки (зубила, молотки, топоры). Стали У10-У13 идут на изготовление инструмента, обладающего высокой твердостью (напильники, хирургический инструмент). Стали У8-У12 применяются также для измерительного инструмента.

Низколегированные инструментальные стали содержат в сум­ме около 1-3% легирующих элементов. Они обладают повышенной по сравнению с углеродистыми сталями прокаливаемостью, но теп­лостойкость их невелика — до 400°С. Основные легирующие эле­менты — хром, кремний, вольфрам, ванадий. Маркируются эти ста­ли так же, как конструкционные, но содержание углерода дается в десятых долях процента. Если первая цифра в марке отсутствует, то содержание углерода превышает 1%. Например 9ХС, ХВГ, ХВ5.

Термообработка низколегированных инструментальных сталей — закалка в масле и отпуск при температуре 150-200°С. При этом обычно достигается сквозная прокаливаемость. Твердость после термообра­ботки составляет HRC 62-64.

Благодаря большей прокаливаемости и закалке в масле низко­легированные стали используются для изготовления инструмента боль­шой длины и крупного сечения (например, сверл диаметром до 60 мм). Применяются для ручного инструмента по металлу и измерительного инструмента.

Быстрорежущие стали предназначены для работы при высоких скоростях резания. Главное их достоинство — высокая теплостой­кость (до 650°С). Это достигается за счет большого количества ле­гирующих элементов — вольфрама, хрома, молибдена, ванадия, ко­бальта. Маркируются быстрорежущие стали буквой Р, число после которой показывает среднее содержание вольфрама в %. Далее идут обозначения и содержание других легирующих элементов. Содержа­ние углерода во всех быстрорежущих сталях приблизительно 1 %, а хрома 4%. Поэтому эти элементы в марке не указываются. Напри­мер, Р18, Р9, Р6М5, Р6М5Ф2К8.

Термообработка быстрорежущих сталей заключается закалке от высоких температур (1200-1300°С) и трехкратном отпуске при 550-570°С. Трехкратный отпуск применяется для того, чтобы избавиться от остаточного аустенита, который присутствует после закалки в ко­личестве приблизительно 30% и снижает режущие свойства. После термообработки сталь имеет мартенситную структуру с карбидными включениями. Твердость после термообработки составляет HRC 64-65.

Быстрорежущие стали применяются для инструмента, использу­емого для обработки металла на металлорежущих станках (резцы, фрезы, сверла). Для экономии дорогих быстрорежущих сталей ре­жущий инструмент часто изготавливается сборным или сварным. Рабочую часть из быстрорежущей стати приваривают к основной части инструмента из конструкционной стали.

Металлокерамические твердые сплавы представляют собой спеченные порошковые материалы, основой которых служат карби­ды тугоплавких металлов, а связующим — кобальт. Их теплостой­кость доходит до 900-1000°С, а твердость HRA 80-97.

Твердые сплавы делятся на три группы. Вольфрамовые изготов­ляются на основе карбида вольфрама и кобальта. Маркируются бук­вами ВК и цифрой показывающей содержание кобальта в % (ВК2, ВК6, ВК10). Титановольфрамовые твердые сплавы содержат допол­нительно карбид титана. Они маркируются буквами Т, К и цифрами. После буквы Τ указывается содержание карбида титана в %, а после буквы К — кобальта (Т15К10, Т15К6). Титанотанталоволъфрамо-вые содержат дополнительно карбид титана. Маркируются буквами ТТ, после которых указывается суммарное содержание карбидов титана и тантала в % и буквой К, после которой указывается содер­жание кобальта (ТТ7К12, ТТ10К8).

Твердые сплавы изготавливаются в виде пластин которые при­паиваются к державке из углеродистой стали. Применяют твердые сплавы для резцов, сверл, фрез и другого инструмента. Главный не­достаток твердых сплавов — высокая хрупкость.


6. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ

 

6.1. Алюминий и его сплавы

 

Алюминий — металл серебристого цвета, характеризующийся низкой плотностью (2,7 г/см3), высокой пластичностью (δ = 40%), низкими прочностью (ση= 80МПа) и твердостью (НВ 25). Темпера­тура плавления — 659°С. Обладает высокой электропроводностью и коррозионной стойкостью. Кристаллизуется в кубической гранецен-трированной решетке и полиморфных превращений не имеет. Мар­кируется буквой А. В зависимости от количества примесей различа­ют алюминий особой чистоты А999 (99,999% А1), высокой чистоты А995, А99, А97 и технической чистоты А85, А8, А7, А6, А5, АО. Применяется алюминий для производства фольги, электрических про­водов.

Как конструкционный материал используется редко вслед­ствие малой прочности. Сплавы алюминия делятся на литейные и деформируемые.

Литейные сплавы алюминия маркируются буквами АЛ и чис­лом, показывающим условный номер сплава. Чтобы сплав обладал хорошими литейными свойствами, он должен иметь низкий темпе­ратурный интервал кристаллизации. Кроме того, желательно, чтобы он имел низкую температуру плавления. Этим требованиям удовлет­воряют эвтектические сплавы. Наибольшее распространение полу­чили сплавы алюминия с кремнием, образующие эвтектику при со­держании 11,6% кремния. Эти сплавы называются силуминами.

Широко применяется силумин эвтектического состава АЛ2, со­держащий 10-12% кремния. Он имеет очень хорошие литейные свой­ства, но малую прочность (σв= 180 МПа). Уменьшение содержания кремния и добавка меди, магния и марганца ухудшает литейные свой­ства силуминов, но улучшает механические. Кроме силуминов ис­пользуются литейные сплавы апюминия с медью (АЛ7) и магнием (АЛ8), не содержащие кремния. Они обладают значительно боль­шей прочностью, чем силумины, но их литейные свойства хуже.

Деформируемые сплавы алюминия делятся на упрочняемые и не упрочняемые термической обработкой. К сплавам, не упрочняемым термической обработкой относятся сплавы алюминия с марганцем (маркируется АМц) и магнием (маркируются АМг1, АМг7). Эти сплавы имеют низкую прочность, но высокую пластичность и кор­розионную стойкость.

К сплавам, упрочняемым термической обработкой относятся дюра­люминий, ковочные сплавы, высокопрочные сплавы алюминия. Дюра­люминий (дуралюмин) представляет собой сплав алюминия с медью (до 5%), марганцем (до 1,8%) и магнием (до 0,9%). Маркируется буквой Д и цифрой, показывающей порядковый номер (Д1, Д16 и др.). Подверга­ется термической обработке, которая состоит из закалки от температу­ры 500°С и естественного старения, заключающегося в выдержке при комнатной температуре в течение нескольких суток. В результате та­кой обработки прочность повышается в два раза (с 200-240 МПа до 450-500 МПа), а пластичность практически не меняется. Достоинством дюралюминия является высокая удельная прочность (отношение преде­ла прочности к плотности), что особенно важно в самолетостроении. Дюралюминий выпускается в виде листов и прутков.

Высокопрочные сплавы алюминия содержат кроме меди и магния дополнительно цинк (до 10%). Эти сплавы маркируются буквой В (В95, В96). Подвергаются термообработке, аналогичной термообработке дю­ралюминия, но естественное старение заменяется искусственным ста­рением, заключающимся в выдержке при температуре 120-140°С в те­чение 16-24ч. В результате предел прочности доходит до 600-700 МПа.

Ковочные сплавы алюминия предназначены для производства деталей ковкой и штамповкой. Маркируются буквами АК и числом, показывающим порядковый номер. По химическому составу близки к дюралюминию (сплав АК1 совпадает по составу с Д1), иногда от­личаясь более высоким содержанием кремния (АК6, АК8). Подвер­гаются аналогичной термообработке.

Малая плотность и высокая удельная прочность обусловили ши­рокое применение алюминиевых сплавов в самолетостроении. Они составляют до 75% массы пассажирских самолетов. Из дюралюминия изготовляются обшивки, каркасы, из высокопрочных сплавов — тяжелонагруженные детали, из ковочных — кованые и штампованные детали (например, лопасти винта).

 

6.2. Медь и ее сплавы

 

Медь— металл красно-розового цвета. Плотность меди 8.94 г/см3, температура плавления — 1083°С. Кристаллизуется в кубической гранецентрированной решетке и полиморфных превращений не имеет. Характеризуется невысокими прочностью (σ = 150-250 МПа) и твер­достью (НВ 60) и хорошей пластичностью (δ = 25% в литом состоянии и δ = 50% в горячедеформированном). Обладает высокой электропро­водностью, теплопроводностью, коррозионной стойкостью в пресной и морской воде. Благодаря высокой электропроводности около полови­ны производимой меди используется в электро- и радиопромышленно­сти. Как конструкционный материал медь не используется из-за высо­кой стоимости и низких механических свойств. Маркируется буквой Μ и цифрами, зависящими от содержания примесей. Медь марок М00 (0,01 % примесей), М0 (0,5%) и Ml (0,1%) используется для изготовле­ния проводников электрического тока, медь М2 (0,3%) — для произ­водства высококачественных сплавов меди, М3 (0,5%) — для сплавов обыкновенного качества. Основные сплавы меди — латуни и бронзы.

Латунями называют сплавы меди с цинком. Цинк повышает проч­ность и пластичность сплава, но до определенных пределов. Наи­большей пластичностью обладают латуни, содержащие 30% цинка, а наибольшей прочностью — 45%. Поэтому более 45% цинка в латунях содержаться не может. Кроме того, цинк удешевляет сплав, так как он дешевле меди. Латуни характеризуются высокой электро­проводностью и теплопроводностью, коррозионной стойкостью, хо­рошо обрабатываются резанием.

По технологическому признаку латуни делятся на деформируе­мые и литейные. По химическому составу латуни делятся на простые (двойные), в которых присутствуют только медь и цинк и сложные (многокомпонентные), в которые для улучшения различных свойств добавлены другие элементы. Наиболее распространены добавки алю­миния, олова, кремния, никеля и др.

Латуни маркируются буквой Л. В деформируемых латунях ука­зывается содержание меди и легирующих элементов, которые обо­значаются соответствующими буквами (О — олово, А — алюминий, К — кремний, Η — никель, Мц — марганец, Ж — железо и т.д.). Содержание элементов дается в % после всех буквенных обозначе­ний. Например, латунь Л63 содержит 63% меди и 37% цинка. Ла­тунь ЛАЖ 60-1-1 содержит 60% меди, 1% алюминия, 1% железа и 38% цинка. В марках литейных латуней указывается содержание цинка, а количество легирующих элементов (в %) ставится после букв их обозначающих. Например, литейная латунь ЛЦ40Мц3А со­держит 40% цинка, 3% марганца, менее 1% алюминия и 56% меди.

Бронзами называются сплавы меди с оловом, алюминием, свинцом и другими элементами, среди которых цинк не является основным. Бронзы обладают высокой коррозионной стойкостью, хорошими литейными свойствами, хорошо обрабатываются давлением и реза­нием. По названию основного легирующего элемента бронзы делят­ся на оловянные, алюминиевые, кремнистые, бериллиевые, свинцо­вые и др.

По технологическому признаку бронзы делят на деформируемые и литейные. Маркируются бронзы буквами Бр, за которыми показывает­ся содержание легирующих элементов в %. Обозначения легирующих элементов и отличия в марках деформируемых и литейных сплавов у бронз такие же, как у латуней. Например, деформируемая бронза БрОФ 6,5-0,4 содержит 6,5% олова и 0,4% фосфора, а литейная бронза БрОЗЦ7С5Н — 3% олова, 7% цинка, 5% свинца, менее 1% никеля.

Особенно широкое применение в машиностроении имеют оло­вянные бронзы. Деформируемые оловянные бронзы обладают высо­кой пластичностью и упругостью. Из них изготовляют прутки, трубы, ленты. Литейные оловянные бронзы имеют хорошие литейные свой­ства, высокую коррозионную стойкость. Из них изготовляют армату­ру, работающую в условиях пресной и морской воды. Олово — отно­сительно дорогой металл, поэтому его стремятся частично или полностью заменить в составе бронз другими.

Алюминиевые бронзы (БрА7, БрАЖН 10-4-4) обладают более высокими механическими свойствами и коррозионной стойкостью по сравнению с оловянными. Кремнистые бронзы (БрКМц 3-1) име­ют хорошую упругость и поэтому используются для изготовления пружинящих деталей. Свинцовые бронзы (БрСЗО) обладают высоки­ми антифрикционными свойствами и применяются в подшипниках скольжения. Бериллиевые бронзы (БрБ2) отличаются высокой твер­достью, прочностью, упругостью и износостойкостью.

 

6.3. Сплавы других цветных металлов

 

Магний и его сплавы. Магний — самый легкий металл, использу­емый в промышленности (плотность — 1,74 г/см3). Имеет гексагональ­ную плотноупакованную решетку и полиморфных превращений не пре­терпевает. Температура плавления магния — 651 °С. Недостатками магния являются низкая прочность и пластичность, низкая коррозионная стой­кость, способность к возгоранию при нагреве. Поэтому чистый магний в качестве конструкционного материала не используется.

Свойства магния значительно улучшаются при сплавлении его с другими элементами, основные из которых — алюминий, марганец и цинк. Магниевые сплавы делятся на литейные и деформируемые. Литейные сплавы маркируются буквами МЛ, а деформируемые — МА. За буквами следует условный номер сплава. Магниевые сплавы, как и алюминиевые способны к упрочняющей термообработке (закалке и старению), но эффект повышения прочности при этом невысок.

Основное преимущество сплавов магния — легкость. Поэтому они применяются в авиа- и ракетостроении. Сплавы магния хорошо свариваются и обрабатываются резанием, но имеют невысокую кор­розионную стойкость.

Титан и его сплавы. Титан — легкий (плотность 4,5 г/см3) и пластичный металл серебристо-белого цвета. Температура плавле­ния титана — 1665°С. Он обладает низкой электропроводностью и теплопроводностью. Механические свойства титана: σ ≈ 300МПа, δ = 60-70%. Главное достоинство титана и его сплавов — высокая коррозионная стойкость. Она достигается за счет образования на его поверхности плотной оксидной пленки. Недостатки титана — склон­ность к взаимодействия с газами при температурах выше 500-600°С, плохая обрабатываемость резанием, высокая стоимость.

Главная цель легирования титана — повышение механических свойств. Основными легирующими элементами являются алюми­ний, хром, молибден, ванадий, марганец. По технологическому признаку сплавы титана делятся на литейные и деформируемые. Маркируются титановые сплавы чаще всего буквами ВТ. Среди сплавов титана имеются обладающие высокой прочностью (ВТ6, ВТ 14 с σ = 1000-1200 МПа), жаропрочностью до 500°С (ВТЗ-1, ВТ8). Литейные сплавы титана (ВТ5Л, ВТ6Л) обладают хорошими литейными свойствами. Используются титановые сплавы в химичес­кой промышленности благодаря высокой коррозионной стойкости, в ракетной и авиационной технике благодаря легкости и высокой удельной прочности.

Другие цветные металлы нашли меньшее применение в техни­ке. Тугоплавкие металлы (вольфрам, молибден, хром, тантал, нио­бий) и никель, а также их сплавы используются как жаропрочные. Сплавы легкоплавких металлов (олова, цинка, свинца) используют­ся в подшипниках скольжения (эти сплавы называются баббиты) и в качестве припоев для пайки металлов. Кроме того, значительная часть цинка расходуется на нанесение покрытий на металлические изде­лия, олова — на лужение консервной жести, свинца — на изготов­ление оболочек электрических кабелей, производство свинцовых аккумуляторов, емкостей для хранения радиоактивных материалов.


7. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

 

7.1. Пластические массы

 

Свойства, состав и классификация пластмасс. Пластическими массами (пластмассами) называются материалы, получаемые на ос­нове природных или синтетических полимеров. Пластмассы являют­ся важнейшими современными конструкционными материалами. Они обладают рядом ценных свойств: малой плотностью (до 2 г/см3), высокой удельной прочностью, низкой теплопроводностью, хими­ческой стойкостью, хорошими электроизоляционными свойствами, звукоизоляционными свойствами. Некоторые пластмассы обладают оптической прозрачностью, фрикционными и антифрикционными свойствами, стойкостью к истиранию и др. Кроме того, пластмассы имеют хорошие технологические свойства: легко формуются, прес­суются, обрабатываются резанием, их можно склеивать и сваривать. Недостатками пластмасс являются низкая теплостойкость, низкая ударная вязкость, склонность к старению для ряда пластмасс.

Основой пластмасс являются полимерные связующие вещества. Кроме связующих в состав пластмасс входят: наполнители для повы­шения прочности и придания специальных свойств; мистификаторы для повышения пластичности, что необходимо при изготовлении из­делий из пластмасс; отвердшпели, ускоряющие переход пластмасс в неплавкое, твердое и нерастворимое состояние; стабилизаторы, пре­дотвращающие или замедляющие процесс старения; красители.

По поведению при нагреве все пластмассы делятся на термопла­стичные и термореактивные. Термопластичные при неоднократном нагревании и охлаждении каждый раз размягчаются и затвердевают. Термореактивные при нагревании размягчаются, затем еще до ох­лаждения затвердевают (вследствие протекания химических реак­ций) и при повторном нагревании остаются твердыми.

По виду наполнителя пластмассы делятся на порошковые, волок­нистые, слоистые, газонаполненные и пластмассы без наполнителя.

По способу переработки в изделия пластмассы подразделяются на литьевые и прессовочные. Литьевые перерабатываются в изделия методами литьевого прессования и являются термопластичными. Прессовочные перерабатываются в изделия методами горячего прес­сования и являются термореактивными.

По назначению пластмассы делятся на конструкционные, хими­чески стойкие, прокладочные и уплотнительные, фрикционные и антифрикционные, теплоизоляционные и теплозащитные, электро­изоляционные, оптически прозрачные, облицовочно-декоративные и отделочные.

Слоистые пластмассы получают прессованием (или намоткой) слоистых наполнителей, пропитанных смолой. Они обычно выпус­каются в виде листов, плит, труб, из которых механической обра­боткой получают различные детали.

Текстолит — это материал, полученный прессованием пакета кусков хлопчатобумажной ткани, пропитанной смолой. Обладает хо­рошей "способностью поглощать вибрационные нагрузки, электро­изоляционными свойствами. Теплостоек до 80°С. Стеклотекстолит отличается от текстолита тем, что в качестве наполнителя использу­ется стеклоткань. Более прочен и теплостоек, чем текстолит, имеет лучшие электроизоляционные свойства. В асботекстолите напол­нителем является асбестовая ткань. Кроме электроизоляционных, он имеет хорошие теплоизоляционные и фрикционные свойства. Гетинакс представляет собой материал, полученный прессованием нескольких слоев бумаги, пропитанной смолой. Он обладает элек­троизоляционными свойствами, устойчив к действию химикатов, может применяться при температуре до 120-140°С. Стекловолокнистый анизотропный материал (СВАМ) получают прессованием листов стеклошпона, пропитанных смолой. Стеклошпон изготовля­ется из стеклянных нитей, которые склеиваются между собой сразу после изготовления. Листы стеклошпона располагаются в материале так, чтобы волокна соседних листов располагались под углом 90°. СВАМ обладает высокой прочностью, хорошими электроизоляци­онными свойствами, теплостоек до 200-400°.

Волокнистые пластмассы представляют собой композиции из волокнистого наполнителя, пропитанного смолой. Они делятся на волокниты, асбоволокниты и стекловолокниты.

В волокнитах в качестве наполнителя применяется хлопковое волокно. Они используются для относительно крупных деталей обще­технического назначения с повышенной стойкостью к ударным на­грузкам.

Асбоволокниты имеют наполнителем асбест — волокнистый минерал, расщепляющийся на тонкое волокно диаметром 0,5 мкм. Обладают теплостойкостью до 200°С, устойчивостью к ударным воздействиям, химической стойкостью, электроизоляционными и фрикционными свойствами. Стекловолокниты имеют в качестве наполнителя короткое стекловолокно или стеклонити. Прочность, электроизоляционные свойства и водостойкость стекловолокнитов выше, чем у волокнитов. Применяются для изготовления деталей, обладающих повышенной прочностью.

Порошковые пластмассы в качестве наполнителя используют органические порошки (древесная мука, порошкообразная целлюло­за) и минеральные порошки (молотый кварц, тальк, цемент, графит). Эти пластмассы обладают невысокой прочностью, низкой ударной вязкостью, электроизоляционными свойствами. Пластмассы с органи­ческими наполнителями применяются для ненагруженных деталей общетехнического назначения — корпусов приборов, рукояток, кно­пок. Минеральные наполнители придают порошковым пластмассам химическую стойкость, водостойкость, повышенные электроизоляци­онные свойства.

Рассмотренные выше пластмассы со слоистыми, волокнистыми и порошковыми наполнителями имеют чаще всего термореактивные свя­зующие, хотя имеются пластмассы с термопластичными связующими.

Пластмассы безнаполнителя чаше всего являются термоплас­тичными материалами. Рассмотрим наиболее важные из них.

Полиэтилен (-CH2-CH2-)n — продукт полимеризации бесцветно­го газа — этилена. Один из самых легких материалов (плотность 0,92 г/см3), имеет высокую эластичность, химически стоек, морозостоек. Недостатки — склонность к старению и невысокая теплостойкость (до 60°С). Используется для изготовления пленки, изоляции про­водов, изготовления коррозионно-стойких труб, уплотнительных деталей. Занимает первое место в общем объеме производства пластмасс.

Полипропилен (-СН2-СНС6Н.-)n — продукт полимеризации газа пропилена. По свойствам и применению аналогичен полиэтилену, но более теплостоек (до 150°С) и менее морозостоек (до -10°С).

Поливинилхлорид (-СН2-СНСl-)n используется для производства винипласта и пластиката. Винипласт представляет собой твердый листовой материал, полученный из поливинилхлорида без добавки пластификаторов. Обладает высокой прочностью, химической стой­костью, электроизоляционными свойствами. Пластикат получают при добавлении в поливинилхлорид пластификаторов, повышающих его пластичность и морозостойкость.

Полистирол (-CH2-CHC6H5-)n — твердый, жесткий, прозрачный полимер. Имеет очень хорошие электроизоляционные свойства. Его недостатки — низкая теплостойкость, склонность к старению и рас­трескиванию. Используется в электротехнической промышленности.

Органическое стекло — прозрачный термопластичный матери­ал на основе полиакриловой смолы. Отличается высокой оптичес­кой прозрачностью, в 2 раза легче минеральных стекол, обладает химической стойкостью. Недостатки — низкая твердость и низкая теплостойкость. Используется для остекления в автомобиле- и само­летостроении, для прозрачных деталей в приборостроении.

Фторопласты имеют наибольшую термическую и химическую стой­кость из всех термопластичных полимеров. Фторопласт-4 (-CF2-CF2-)n водостоек, не горит, не растворяется в обычных растворителях, обла­дает электроизоляционными и антифрикционными свойствами. При­меняется для изготовления изделий, работающих в агрессивных сре­дах при высокой температуре, электроизоляции и др. Фторопласт-3 (-CF2-CFCl-)n по свойствам и применению аналогичен фторопласту-4, уступая ему по термо- и химической стойкости и превосходя по проч­ности и твердости.

Газонаполненные пластмассы представляют собой материалы на основе синтетических смол, содержащие газовые включения. В пенопластах поры, заполненные газом, не соединяются друг с дру­гом и образуют замкнутые объемы. Они отличаются малой плотнос­тью (0,02-0,2 г/см3), высокими тепло-, звуко- и электроизоляцион­ными свойствами, водостойкостью. Недостатки пенопластов — низкая прочность и низкая теплостойкость (до 60°С). Используются для теплоизоляции и звукоизоляции, изготовления непотопляемых пла­вучих средств, в качестве легкого заполнителя различных конструк­ций. Мягкие виды пенопластов используются для изготовления ме­бели, амортизаторов и т.п.

Поропласты — это газонаполненные пластмассы, поры которых сообщаются между собой. Их плотность составляет 0,02-0,5 г/см3. Они представляют собой мягкие эластичные материалы, обладающие водопоглощением.

 

7.2. Резиновые материалы

Резина представляет собой искусственный материал, получае­мый в результате специальной обработки резиновой смеси, основ­ным компонентом которой является каучук. Каучук — это полимер, отличительной особенностью которого является способность к очень большим обратимым деформациям при небольших нагрузках. Это свойство объясняется строением каучука. Его макромолекулы име­ют вытянутую извилистую форму. При нагрузке происходит выпрям­ление макромолекул, что и объясняет большие деформации. При разгрузке макромолекулы принимают исходную форму. Различают натуральный и синтетический каучук. Натуральный каучук добыва­ют из некоторых видов тропических растений в незначительных количествах. Поэтому производство резины основано на примене­нии синтетических каучуков. Сырьем для производства синтетичес­кого каучука служит спирт, на смену которому приходит нефтехи­мическое сырье.

Резину получают из каучука путем вулканизации, т.е. в процессе химического взаимодействия каучука с вулканизатором при высокой температуре. Вулканизатором чаще всего является сера. В процессе вулканизации сера соединяет нитевидные молекулы каучука и образу­ется пространственная сетчатая структура. В зависимости от количе­ства серы получается различная частота сетки. При введении 1-5% серы образуется редкая сетка и резина получается мягкой. С увеличе­нием содержания серы сетка становится все более частой, а резина более твердой и приблизительно при 30% серы получается твердый материал, называемый эбонитом.

Кроме каучука и вулканизатора в состав резины входит ряд дру­гих веществ. Наполнители вводят в состав резины от 15 до 50% к массе каучука. Активные наполнители (сажа, оксид цинка и др.) слу­жат для повышения механических свойств резин. Неактивные напол­нители (мел, тальк и др.) снижают стоимость резиновых изделий. Пластификаторы (парафин, вазелин, стеариновая кислота, мазут, ка­нифоль и др.) предназначены для облегчения переработки резиновой смеси, повышения эластичности и морозостойкости резины. Противостарители служат для замедления процесса старения резины, при­водящего к ухудшению ее эксплуатационных свойств. Красители слу­жат для придания резине нужного цвета. В резину также добавляются регенераты — продукты переработки старых резиновых изделий и отходы резинового производства. Они снижают стоимость резин.

Основное свойство резины — очень высокая эластичность. Рези­на способна к большим деформациям, которые почти полностью об­ратимы. Кроме того, резина характеризуется высоким сопротивлени­ем разрыву и истиранию, газо- и водонепроницаемостью, химической стойкостью, хорошими электроизоляционными свойствами, неболь­шой плотностью, малой сжимаемостью, низкой теплопроводностью.

По назначению резины подразделяются на резины общего и спе­циального назначения. Из резин общего назначения изготовляются автомобильные шины, транспортерные ленты, ремни ременных пе­редач, изоляция кабелей, рукава и шланги, уплотнительные и амор­тизационные детали, обувь и др. Резины общего назначения могут использоваться в горячей воде, слабых растворах щелочей и кислот, а также на воздухе при температуре от -10 до +150°С.

Резины специального назначения подразделяются на теплостой­кие, которые могут работать при температуре до 250-350°С; моро­зостойкие, выдерживающие температуру до -70°С; маслобензостойкие, работающие в среде бензина, других топлив, масел и нефтепродуктов; светоозоностойкие, не разрушающиеся при работе в атмосферных условиях в течении нескольких лет, стойкие к дей­ствию сильных окислителей; электроизоляционные, применяемые для изоляции проводов и кабелей; электропроводящие, способные про­водить электрический ток.

 

7.3. Древесные материалы

 

Древесина — это органический материап растительного проис­хождения, представляющий собой сложную ткань древесных расте­ний. Она составляет основную массу ствола деревьев. Древесина яв­ляется волокнистым материалом, причем волокна в ней расположены вдоль ствола. Поэтому для нее характерна анизотропия, т.е. ее свой­ства вдоль и поперек волокон различны.

Достоинствами древесины являются относительно высокая проч­ность; малая объемная масса и, следовательно, высокая удельная прочность; хорошее сопротивление ударным и вибрационным на­грузкам; малая теплопроводность и, следовательно, хорошие тепло­изоляционные свойства; химическая стойкость; хорошая техноло­гичность (легкость обработки и изготовления изделий). К недостаткам древесины следует отнести гигроскопичность, т.е. способность впи­тывать влагу, и возникающую из-за изменения влажности нестабиль­ность свойств и размеров (усушка и набухание), а также отсутствие огнестойкости, неоднородность строения, склонность к гниению. Для защиты древесины от увлажнения, загнивания и воспламенения про­изводят окраску лаками и красками, опрыскивание и пропитку спе­циальными химическими веществами.

Материалы из древесины можно разделить на лесоматериалы, сохраняющие природную физическую структуру и химический состав древесины и древесные материапы, полученные путем специальной обработки исходной древесины. В свою очередь лесоматериалы под­разделяются на необработанные (круглые), пиломатериалы, луще­ные (древесный шпон) и колотые.

Круглые лесоматериалы получают из спиленных деревьев после очистки от ветвей, разделения поперек ствола на части требуемой длины и окорки. Они применяются в строительстве, в качестве опор и столбов линий электропередач, в качестве сырья.

Пиломатериалы получают лесопилением. Пиломатериалы с опи­ленными кромками называют обрезными, неопиленными — нео­брезными. Подвергающиеся после пиления дальнейшей обработки называют стругаными. Пиломатериалы делятся в зависимости от поперечного сечения на следующие виды: брусья (толщина или ши­рина больше 100 мм), бруски (ширина не более двойной толщины), доски (ширина более двойной толщины), планки (узкие и тонкие доски).

Древесный шпон — это широкая ровная стружка древесины, получаемая путем лущения. Толщина листов шпона 0,5-1,5 мм. Ис­пользуется шпон в качестве полуфабрикатов для изготовления фане­ры, облицовочного материала для изделий из древесины.

К материалам, полученным путем специальной обработки дре­весины можно отнести фанеру, прессованную и модифицированную древесину, древесностружечные и древесноволокнистые плиты и др. Фанера — это листовой материал, полученный путем склейки лис­тов шпона. При этом волокна соседних листов находятся под пря­мым углом друг к другу. Толщина фанеры от 1 до 12 мм, более толстые материалы называют плитами. Столярные плиты представ­ляют собой трехслойные щиты, состоящие из реечного заполнителя, оклеенного с обеих сторон древесным шпоном. Прессованная дре­весина — это материал, получаемый при горячем прессовании брус­ков, досок и других заготовок поперек волокон под давлением до 30 МПа. В результате прочность возрастает по сравнению с исходной более чем в два раза. Модифицированная древесина представляет собой материал, полученный при обработке древесины каким-либо химическим веществам (смолой, аммиаком и др.) с целью повыше­ния механических свойств и придания водостойкости. Древесност­ружечные плиты изготовляют прессованием древесной стружки со связующим. Плиты могут быть облицованными шпоном, фанерой или бумагой. Древесноволокнистые плиты изготовляют путем прес­сования древесных волокон при высокой температуре, иногда с до­бавлением связующих веществ.


 

7.4. Неорганические материалы

 

Стеклом называется твердый аморфный термопластичный мате­риал получаемый переохлаждением расплава различных оксидов. В состав стекла входит стеклообразующие кислотные оксиды (SiO,, А12O3, В2O3 и др.), а также основные оксиды (Κ,Ο, CaO, Na2O и др.), придающие ему специальные свойства и окраску. Оксид кремния Si02 является основой практически всех стекол и входит в их состав в количестве 50 — 100%. По назначению стекла подразделяются на строительные (оконные, витринные и др.), бытовые (стеклотара, посуда, зеркала и др.) и технические (оптические, свето- и элект­ротехнические, химико-лабораторные, приборные и др.).

Важными свойствами стекла являются оптические. Обычное стекло пропускает около 90%, отражает — 8% и поглощает — 1 % видимого света. Механические свойства стекла характеризуются высоким' со­противлением сжатию и низким — растяжению. Термостойкость стекла определяется разностью температур которую оно может выдержать без разрушения при резком охлаждении в воде. Для большинства сте­кол термостойкость колеблется от 90 до 170°С, а для кварцевого стекла, состоящего из чистого SiO2 — 1000°С. Основной недостаток стекла — высокая хрупкость.

Керамика — это неорганический минеральный материал, полу­чаемый из отформованного минерального сырья путем спекания при высоких температурах (1200-2500°С). Структура керамики состоит из кристаллической, стекловидной (аморфной) и газовой фазы. Кри­сталлическая фаза является основой керамики, ее количество со­ставляет до 100%. Она представляет собой различные химические соединения и твердые растворы. Стекловидная фаза находится в керамике в виде прослоек стекла. Ее количество составляет до 40%. Она снижает качество керамики. Газовая фаза представляет собой газы, находящиеся в порах керамики.

По назначению керамика может быть разделена на строитель­ную, бытовую и художественно-декоративную, техническую. Строи­тельная ( например, кирпич) и бытовая (например, посуда) чаще всего имеет в структуре газонаполненные поры и изготовляется из глины. Техническая керамика имеет почти однофазную кристалли­ческую структуру и изготовляется из чистых оксидов (реже карбидов, боридов или нитридов). Основные оксиды, используемые для произ­водства керамики — А1203, ZnO2, MgO, CaO, ВеО. Техническая ке­рамика используется в качестве огнеупорного, конструкционного и инструментального материала. Она обладает высокой прочностью при сжатии и низкой при растяжении. Главный недостаток керами­ки, как и стекла — высокая хрупкость.

Ситаллы представляют собой материалы, полученные путем кристаллизации стекол. Ситаллы изготовляют путем плавления сте­кольного материала с добавкой катализаторов кристаллизации. Да­лее расплав охлаждается до пластического состояния и из него фор­муются изделия. Кристаллизация обычно происходит при повторном нагревании изделий.

По структуре ситаллы занимают промежуточное место между стеклом и керамикой. Их структура состоит из зерен кристалличес­кой фазы, скрепленных стекловидной прослойкой. Содержание кри­сталлической фазы составляет 30-95%. Пористость отсутствует. Си­таллы характеризуются исключительной мелкозернистостью. По внешнему виду могут быть прозрачными и непрозрачными.

Структура ситаллов определяет их свойства. Ситаллы имеют высокую твердость, высокую прочность при сжатии и низкую при растяжении, обладают жаропрочностью до 900-1200°С, жаростой­костью, износостойкостью. Они характеризуются высокой химичес­кой стойкостью и хорошими электроизоляционными свойствами. Ситаллы отличаются хрупкостью, однако меньшей, чем стекло.

При­меняются ситаллы для деталей, работающих при высоких темпера­турах и в агрессивных средах, деталей радиоэлектроники, инстру­ментов.

 

7.5 Композиционные материалы

 

Композиционными называют сложные материалы в состав которых входят отличающиеся по свойствам нерастворимые друг в друге компо­ненты. Основой композиционных материалов является сравнительно пластичный материал, называемый матрицей. В матрице равномерно распределены более твердые и прочные вещества, называемые упроч-нителями или наполнителями. Матрица может быть металлической, полимерной, углеродной, керамической. По типу упрочнителя компо­зиционные материалы делятся на дисперсноупрочненные, в которых уи-рочнителем служат дисперсные частицы оксидов, карбидов, нитридов и др., волокнистые, в которых упрочнителем являются волокна различ­ной формы и слоистые, состоящие из чередующихся слоев волокон и листов матричного материала.

Среди дисперсноупрочненных материалов ведущее место зани­мает САП (спеченная алюминиевая пудра), представляющий собой алюминий, упрочненный дисперсными частицами оксида алюминия. Получают САП из окисленной с поверхности алюминиевой пудры путем последовательного брикетирования, спекания и прессования. Структура САП состоит из алюминиевой основы с равномерно рас­пределенными частицами А120,. С увеличением содержания А1,03 повышается прочность, твердость, жаропрочность САП, но снижа­ется его пластичность. Марки САП-1, САП-2, САП-3, САП-4 содер­жат, соответственно, 6-8,9-12, 13-17, 18-22% А12Ог Высокая проч­ность САП объясняется большой дисперсностью упрочнителя и малым расстоянием между его частицами. По жаропрочности САП превос­ходит все алюминиевые сплавы.

В волокнистых композиционных материалах упрочнителем слу­жат углеродные, борные, синтетические, стеклянные и др. волокна, нитевидные кристаллы тугоплавких соединений (карбиды кремния, оксиды алюминия и др.) или металлическая проволока (стальная, вольфрамовая и др.). Свойства материала зависят от состава компо­нентов, количественного соотношения и прочности связи между ними. Для металлических композиционных материалов прочная связь между волокном и матрицей достигается благодаря их взаимодействию. Связь между компонентами в композиционных материалах на неметалли­ческой основе осуществляется с помощью адгезии. Повышение адге­зии волокон к матрице достигается их поверхностной обработкой. Производится осаждение нитевидных кристаллов на поверхность волокон. При этом получаются «мохнатые» волокна с улучшенной адгезией, благодаря чему улучшаются механические свойства ком­позиционного материала.

Среди неметаллических волокнистых композиционных матери­алов наибольшее распространение получили материалы с полимер­ной матрицей. Материалы, содержащие в качестве упрочнителя уг­леродные волокна, называются карбоволокнитами. Они обладают низкими теплопроводностью и электропроводностью, хорошей из­носостойкостью. Недостаток кабоволокнитов — низкая прочность при сжатии и сдвиге. Материалы с упрочнителем в виде волокон бора называют бороволокнитами. Они характеризуются высокой прочностью при растяжении, сжатии и сдвиге, высокими твердостью и модулем упругости, тепло- и электропроводностью. Материалы, содержащие в качестве упрочнителя синтетические волокна (кап­рон, лавсан и др.), называются органоволокнитами. Они обладают высокой удельной прочностью в сочетании с хорошей пластичнос­тью и ударной вязкостью, электроизоляционными свойствами.

Волокнистые композиционные материалы на металлической основе имеют более высокие характеристики, зависящие от свойств матрицы. В качестве матрицы используются металлы, имеющие не­большую плотность (алюминий, магний, титан), их сплавы, а также никель для создания жаропрочных материалов. В качестве упрочни-теля используют стальную проволоку (наиболее дешевый материал), борные и углеродные волокна. При создании жаропрочных компо­зиционных материалов на основе никеля используется вольфрамо­вая проволока.


8. ЭКОНОМИЧЕСКИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ МАТЕРИАЛОВ

 

8.1. Экономически обоснованный выбор материала

 

Правильный выбор материала для конкретного изделия является исключительно важной задачей. Он производится с учетом целого ряда критериев. При этом технические критерии выбора материала определяются условиями эксплуатации изделия. Они определяют комплекс механических свойств (прочность, упругость, твердость, пластичность, вязкость), а в ряде случаев и требования к специаль­ным свойствам (коррозионная стойкость, жаростойкость, жаропроч­ность, износостойкость, радиоционная стойкость и др.). Способ из­готовления изделий определяет требования к технологическим свойствам материала (ковкость, литейные свойства, обрабатываемость резанием, свариваемость). Если изделие должно подвергаться терми­ческой обработке, следует также учитывать прокаливаемость и зака­ливаемость.

Приведенные требования накладывают определенные ограниче­ния на выбор материала. Если они оказываются достаточно жестки­ми, то возможный выбор ограничивается весьма узкой группой мате­риалов. При меньшей жесткости требований выбор становится более широким. В любом случае, когда возможны различные варианты решения задачи выбора материала, окончательный ответ должен дать экономический анализ вопроса. Исходными данными для этого слу­жат цены материалов. Однако выбор наиболее дешевого материала далеко не всегда будет оптимальным. Экономия также может быть получена за счет следующих факторов.

1. Использование более прочного материала. Это дает возмож­ность уменьшить размеры изделия, т.е. позволяет снизить расход материала на единицу готовой продукции. Уменьшение размеров также способствует снижению затрат на транспортирование изде­лий. Кроме того, появляется возможность повысить мощность и про­изводительность оборудования, изготовленного из более прочных материалов.

2. Применение более технологичного материала, позволяющего применять более экономичные методы изготовления и обработки изделий. При этом экономия может быть получена как непосред­ственно за счет снижения себестоимости изготовления, так и за счет снижения расхода материала благодаря уменьшению отходов и брака.

3. Применение материала с более длительным сроком службы, что приводит к повышению долговечности готового изделия.

4. Использование материалов, способных работать в более тяже­лых условиях (при более высоких нагрузках, более высоких темпе­ратурах, в более агрессивной среде). Применение таких материалов при изготовлении различных машин и оборудования позволяет из­менить рабочие параметры машин (например, повысить давление или температуру), что приводит к повышению производительности и, соответственно, снижению себестоимости единицы работы или продукции.

Перечисленные факторы связаны, прежде всего, с повышением качества используемого материала. Более качественный материал, как правило, является и более дорогостоящим, так как улучшение качества сопровождается увеличением затрат на производство мате­риала. Правильный выбор материала должен учитывать как эконо­мический эффект от повышения качества, так и увеличение стоимо­сти материала. Для этого производится сравнительный расчет экономической эффективности применения различных материалов, по результатам которого и делается окончательный выбор. Только если увеличение цены перекрывается полученным экономическим эффектом, применение более дорогостоящего материала целесооб­разно. Методика определения экономической эффективности здесь не рассматривается, так как является предметом специальных кур­сов. Приведем некоторые примеры.

Для строительных конструкций могут быть применены как угле­родистые, так и низколегированные стали (см. раздел 5.1.). Низко­легированные стали обеспечивают повышение предела текучести приблизительно в 1,5 раза по сравнению с углеродистыми. Благода­ря этому масса конструкций снижается на 20-50%. При этом себес­тоимость проката из низколегированных сталей на 10-15% выше, чем из углеродистых. Отсюда видно, что себестоимость низколеги­рованных сталей возрастает в меньшей степени, чем достигается эко­номия из-за увеличения прочности. Но не только этим обусловлена эффективность применения низколегированных сталей. В отличие от углеродистых сталей, они не склонны к хрупким разрушениям при температуре ниже -40°С. Это обеспечивает высокую надежность и долговечность конструкций. Таким образом, применение низколеги­рованных строительных сталей экономически выгодно.

В хромоникелевых коррозионных сталях при эксплуатации при 450-850°С развивается межкристаллитная коррозия (см. раз­дел 5.2.). Для уменьшения склонности к коррозии стали дополни­тельно легируются титаном или в них снижают содержание углеро­да. Это делает сталь более дорогостоящей. Однако удорожание оправдывается значительно более длительным сроком службы таких сталей. В том случае, когда рабочая температура не превышает 400°С, использование более дорогостоящих сталей становится экономичес­ки не оправданным.

Целесообразность применения пластмасс диктуется технически­ми соображениями. Свойства пластмасс с одной стороны делают их незаменимыми, а с другой часто не позволяют им конкурировать с металлическими материалами. Если же применение пластмасс по техническим соображениям возможно, оно обычно является эконо­мически эффективным. Благодаря малой плотности пластмассы в 4 раза снижается материалоемкость изделий. Затраты на производ­ство пластмассовых изделий значительно меньше, чем на производ­ство металлических. Это происходит вследствие хорошей техноло­гичности пластмасс: производство пластмассовых изделий происходит путем прессования, литья или выдавливания, а металлические изде­лия производятся литьем или обработкой давлением, путем механи­ческой и термической обработки с большим числом операций. Час­то применение пластмасс в машинах и оборудовании приводит к уменьшению затрат на смазку, ремонт, повышению надежности, уве­личению срока службы и т. д. Благодаря всему этому себестоимость пластмассовых изделий в 2-3 раза ниже себестоимости аналогичных металлических.

 

8.2. Основные направления экономии материалов

 

Доля стоимости материалов составляет от 40 — 70% всех затрат на изготовление готовых изделий. А для изделий, производ­ство которых широко механизировано и автоматизировано (шари­коподшипники, болты, электрокабели) эта доля доходит до 80%. Поэтому экономия материалов — один из важнейших резервов сни­жения себестоимости готовой продукции. Еще более важен тот факт, что запасы сырья для производства материалов (различные руды для металлов и сплавов, нефть и газ для полимерных материалов и др.) являются ограниченными. Отсюда ясно, что экономия и повыше­ние эффективности использования материалов являются насущной задачей.

Огромное количество материалов теряется в процессе производ­ства готовых изделий. В нашей стране вследствие устаревших мето­дов разливки стали из каждой ее тонны получалось примерно 750 кг готового проката, а далее в машиностроении из каждой тонны про­ката около 250 кг уходило в отходы. Потери материала при произ­водстве изделий характеризует коэффициент использования мате­риала, представляющий собой отношение массы готового изделия к массе заготовки. Для профильного проката он составляет 0,7; пруг-ков — 0,35; горячей штамповки — 0,45 и свободной ковки — 0,3. Более высокий коэффициент использования материала характерен для литейного производства: для литья в песчаные формы оно состав­ляет 0,7; литья в кокиль — 0,75; в оболочковые формы — 0,8; литья по выплавляемым моделям — 0,9 и литья под давлением — 0,95. Очень высок коэффициент использования при изготовлении изделий из металлических порошков. Благодаря хорошей технологичности пластмасс для них коэффициент использования материала выше, чем для металлов и сплавов: при прессовании он равен 0,9; при литье и выдавливании — 0,95. Из приведенных данных ясно, что основной путь экономии материала в процессе производства изде­лий — использование современных малоотходных и безотходных технологий: непрерывной разливки стали, малоотходных методов штамповки, специальных способов литья, методов порошковой ме­таллургии.

Другое направление экономии материалов — максимальное использование вторичных ресурсов. Это не только экономическая, но и экологическая задача, так как скопление отходов наносит ог­ромный вред окружающей среде. Однако следует иметь в виду, что переработка отходов не всегда является технически выполнимой или экономически рентабельной. Использование металлолома в произ­водстве металлов и сплавов не вызывает технических трудностей и экономически выгодно. Производство стали из металлолома обхо­дится в несколько раз дешевле, чем из чугуна. Кроме того, каждая тонна металлолома экономит 1,5 тонны железной руды. Производ­ство цветных металлов из вторичного сырья также высокоэффек­тивно. На производство тонны алюминия из металлолома затрачива­ется приблизительно в 20 раз меньше электроэнергии и в 7 раз меньше топлива. Используются отходы и других цветных металлов. Большая часть металлолома — это промышленные отходы и пришедшие в негодность машины и оборудование. С экологической точки зрения важно также осуществлять переработку металлосодержащих шла­ков, находящихся в отвалах и терриконах.

Значительно хуже обстоит дело с повторной переработкой пластмасс. Экологическая проблема заключается в том, что поли­мерные отходы разлагаются очень медленно или совсем не разлага­ются. Некоторые виды пластмасс (термореактивные) вообще не под­даются вторичной обработке. Если же их сжигать, то это вызовет значительное загрязнение атмосферы. Из пластмасс, вторичное ис­пользование которых возможно, каждый вид требует своего способа переработки. Поэтому необходимо сортировать отходы по типу пла­стмасс. Это практически неосуществимо: на глаз распознать тип пластмассы очень трудно, а точный анализ был бы очень дорог. Воз­можно использование измельченных отходов пластмасс, независимо от их вида, в качестве наполнителя при производстве строительных материалов и дорожных покрытий. Сказанное не относится к тем случаям, когда тип пластмасс известен (например, отходы пласт­масс, получаемые непосредственно при производстве изделий). В этом случае осуществляется их переработка. Из неметаллических материалов, вторичная переработка которых не вызывает серьезные трудности, отметим стекло. Кроме того, стеклянная посуда может собираться и использоваться повторно. Резиновое вторсырье пере­рабатывается и добавляется в резину при ее производстве.

Огромные потери металлических материалов вызывает корро­зия, которая приводит к долгосрочному выходу из строя изделий и сооружений. Ежегодно от коррозии теряется количество металла, равное 10% от выплавляемого. Поэтому важнейшее направление экономии металлических материалов — правильная защита их от коррозии. Радикальный метод — применение коррозионностойких (не­ржавеющих) сталей. Однако следует иметь в виду, что они в 4-8 раз дороже обыкновенных углеродистых сталей. Поэтому в каждом слу­чае надо применять соответствующий метод защиты от коррозии (см. раздел 5.2.).

Значительные потери материалов вызывает износ. При этом про­исходит выход из строя элементов машин, работающих в условиях трения, что вызывает дополнительные материальные потери, связан­ные с ремонтом техники. Борьба с износом — один из путей эконо­мии материалов.

 

Предыдущая статья:Закалка и отпуск стали Следующая статья:Общие сведения и понятия о паспортизации систем теплопотребления
page speed (0.0144 sec, direct)