Всего на сайте:
282 тыс. 988 статей

Главная | Математика

Решение задачи 4  Просмотрен 134

1) Приведем заданное уравнение кривой 2-го порядка к каноническому виду. Для этого выделим полный квадрат по переменной у (квадрат переменной х в уравнении отсутствует):

.

Получили уравнение параболы вида с вершиной
в точке (см. табл. 2 в разделе "справочный материал"). Осуществим параллельный перенос осей координат по формулам:
В результате получим каноническое уравнение параболы в системе координат X1O1Y1.

2) Найдем точки пересечения параболы и заданной прямой в системе координат XOY. Для этого решим систему уравнений:


Таким образом, парабола и прямая пересекаются в точках А (3; 0)
и В (1; 1).

3) Построим обе линии в системе координат XOY (рис. 15).

Ответы: 1) ;

2) А (3; 0), В (1; 1);

3) чертеж на рис. 15.

Предыдущая статья:Решение задачи 3 Следующая статья:Решение задачи 5
page speed (0.0134 sec, direct)