Решение задачи 4
134
1) Приведем заданное уравнение кривой 2-го порядка к каноническому виду. Для этого выделим полный квадрат по переменной у (квадрат переменной х в уравнении отсутствует):
.
Получили уравнение параболы вида с вершиной
в точке (см. табл. 2 в разделе "справочный материал"). Осуществим параллельный перенос осей координат по формулам:
В результате получим каноническое уравнение параболы в системе координат X1O1Y1.
2) Найдем точки пересечения параболы и заданной прямой в системе координат XOY. Для этого решим систему уравнений:
Таким образом, парабола и прямая пересекаются в точках А (3; 0)
и В (1; 1).
3) Построим обе линии в системе координат XOY (рис. 15).
Ответы: 1) ;
2) А (3; 0), В (1; 1);
3) чертеж на рис. 15.