Всего на сайте:
248 тыс. 773 статей

Главная | Математика

Интегральное исчисление функции одной переменной. Дифференциальные уравнения  Просмотрен 182

Кафедра высшей математики

и программного обеспечения ЭВМ

 

Интегральное исчисление
функции одной переменной.
Дифференциальные уравнения

Часть 3

Методические рекомендации к выполнению контрольных работ
для студентов 1 курса вечерне-заочного факультета
по дисциплине "Математика"

Мурманск

 

Составители: Великая Елена Евгеньевна, старший преподаватель кафедры высшей математики и программного обеспечения ЭВМ МГТУ;

Мостовская Любовь Григорьевна, доцент кафедры высшей математики и программного обеспечения ЭВМ МГТУ;

Хохлова Людмила Ивановна, доцент кафедры высшей математики и программного обеспечения ЭВМ МГТУ

 

Методические рекомендации рассмотрены и одобрены кафедрой
15 февраля 2006 г., протокол № 4

 

Рецензент – В.С. Кацуба, канд. физ.-мат. наук, доцент кафедры высшей математики и программного обеспечения ЭВМ МГТУ

Оригинал-макет подготовлен в авторской редакции

Электронная верстка Е.И. Бабушкиной

 

© Мурманский государственный
технический университет, 2007

 

 

Введение

 

В настоящем пособии содержатся методические рекомендации к изучению теоретического материала и выполнению контрольных работ по темам "Интегральное исчисление функции одной переменной" и "Дифференциальные уравнения", варианты этих контрольных работ и список рекомендуемой литературы.

В результате изучения этих тем студенты должны:

• изучить основные методы интегрирования – интегрирование методом замены переменной и интегрирование по частям, научиться интегрировать рациональные дроби и тригонометрические функции;

• получить представление об определенном интеграле и его свойствах, научиться вычислять его по формуле Ньютона-Лейбница;

• научиться исследованию несобственных интегралов первого и второго рода на сходимость и расходимость;

• научиться использовать определенный интеграл для решения геометрических задач, таких как вычисление площади плоской фигуры, объема тела вращения, длины дуги плоской кривой.

• знать основные понятия теории дифференциальных уравнений
(порядок дифференциального уравнения, его общее и частное решения, начальные условия и др.) и уметь определять тип дифференциального уравнения;

• знать и уметь использовать методы решения основных типов дифференциальных уравнений 1-го порядка а также дифференциальных уравнений 2-го порядка, допускающих понижение порядка;

• уметь решать линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами и системы линейных дифференциальных уравнений 1-го порядка методом повышения порядка.

Данные методические рекомендации включают также справочный материал, необходимый для выполнения контрольных работ по темам "Интегральное исчисление функции одной переменной" и "Дифференциальные уравнения", и подробные решения примерных вариантов работ со ссылками на используемый справочный материал.

Методические указания по темАМ
"Интегральное исчисление функции одной
переменной" И "Дифференциальные уравнения"

В табл. 1 приведены наименования тем в соответствии с содержанием контрольных работ и ссылки на литературу по этим темам. Перед выполнением каждой из контрольных работ рекомендуется изучить соответствующий теоретический материал и решить указанные в таблице задачи.

Таблица 1

№ к. раб. № задачи Содержание (темы) Литература
    Первообразная и неопределенный интеграл. Свойства неопределенного интеграла. Таблица интегралов. Основные методы интегрирования: метод замены переменной, интегрирование по частям [1], гл. VII, § 29, 30; [3], гл.7, § 1–4; [4], гл. IX, № 1337–1350, 1368–1371, 1373–1375; 1392–1396; [6], гл. 6, № 2–14, 36–50, 102, 103, 108, 109, 114, 118–120
    Интегрирование рациональных дробей. Интегрирование некоторых тригонометрических функций [1], гл. VII, § 31, 32; [3], гл.7, § 5, 6.3; [4], гл. IX, № 1410–1416, 1428–1434, 1489–1490, 1494–1505; [6], гл. 6, № 172, 177–180, 193, 194–199, 230–242
    Определенный интеграл и его свойства. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Несобственные интегралы первого и второго рода [1], гл. VIII, § 35-40; [3], гл. 8, § 1, 4–9, 11; [4], гл. X, № 1552–1554, 1559–1560; 1572–1578; [6], гл. 6, № 255–266, 355–360, 366–369
    Приложение определенного интеграла: вычисление площади плоской фигуры [1], гл. VIII, § 41.1, 41.2; [3], гл. 8, § 10.1, 10.2; [4], гл. X, № 1596–1601; [6], гл. 6, № 290–294, 301, 302
    Приложение определенного интеграла: вычисление объема тела вращения [1], гл. VIII, § 41.4; [3], гл. 8, § 10.4; [4], гл. X, № 1628–1631; [6], гл. 6, № 319–323
   

Продолжение табл. 1

№ к. раб. № задачи Содержание (темы) Литература
    Приложение определенного интеграла: вычисление длины дуги плоской кривой [1], гл. VIII, § 41.3; [3], гл. 8, §10.3; [4], гл. X, № 1613–1618; [6], гл. 6, № 307–312
    Дифференциальные уравнения 1-го порядка [2], гл. I, § 1.1, 1.2, 2.1–2.4; [3], гл. 15, § 1.1–1.6; [5], гл. IV, № 515–517, 550–556, 603–608; [6], гл. 14, № 32–38, 43–54, 61–64, 139–140
    Дифференциальные уравнения 2-го порядка, допускающие понижение порядка [2], гл. I, § 3.1, 3.2; [3], гл. 15, § 2.1–2.2; [5], гл. IV, № 651, 652, 654, 659–665
    Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами [2], гл. I, § 3.4, 4.1, 5.1–5.3; [3], гл. 15, § 3–4; [5], гл. IV, № 696–699; 721–726; [6], гл. 14, № 98–111, 180, 184, 185
    Системы линейных дифференциальных уравнений 1-го порядка [2], гл. I, § 6.1–6.2; [5], гл. IV, № 778–782; [6], гл. 14, № 208–213
   

Примечание. Ссылки на литературу в таблице даны в соответствии с номерами
в списке рекомендуемой литературы.

Справочный материал по теме "Интегральное
исчисление функции одной переменной"

Первообразная и неопределенный интеграл. Таблица интегралов

Функция F(x) называется первообразной для функции f(x) на интервале (a, b), если для всех x из этого интервала выполняется равенство

. (1)

Неопределенным интегралом от функции f(x) называется множество всех первообразных этой функции, то есть неопределенный интеграл – это выражение вида , где .

Процедуру нахождения неопределенного интеграла называют интегрированием. При интегрировании используют: таблицу интегралов (табл. 2), свойства интегралов и специальные методы интегрирования, основные
из которых – замена переменной и интегрирование по частям.

Таблица 2

1. ; 2. ; 3. ; 4. ; 5. ; 6. ; 7. ; 8. ; 9. ; 10. ; 11. ; 12. ; 13. ; 14. ; 15. ; 16. .
 

2. Свойства неопределенного интеграла.
Замена переменной под знаком неопределенного интеграла

При интегрировании функций наиболее часто используются следующие его свойства:

1) ;

2) ;

3) .

Пример 1. Найти .

Решение. Воспользуемся свойствами 1–3, а также таблицей интегралов:

= + 3 = .

Ответ: = .

Одним из основных методов интегрирования является метод замены переменной (метод подстановки), который в некоторых случаях позволяет свести заданный интеграл к табличному интегралу.

Замена переменной под знаком неопределенного интеграла осуществляется по формулам:

или

. (2)

Пример 2. Найти .

Решение. Воспользуемся формулой (2) и таблицей интегралов:

Ответ: .

Этот интеграл можно взять, используя подведение под знак дифференциала части подинтегральной функции (не прописывая замену переменной)

= = .

Наиболее часто прием подведения под знак дифференциала используется при линейной замене переменной интегрирования:

, (3)

так как .

Пример 3. Найти .

Решение. Согласно формуле (3) можно записать:

.

Теперь воспользуемся свойством 2, а также таблицей интегралов:

Ответ: = .

Предыдущая статья:Химическая потребность в кислороде (ХПК) 5 страница Следующая статья:Интегрирование по частям
page speed (0.0181 sec, direct)