Всего на сайте:
248 тыс. 773 статей

Главная | Биология, Зоология, Анатомия

Качественные особенности обмена веществ (динамическая устойчивость, особенности биоэнергетики, ферментативность, энтропия).  Просмотрен 68

  1. Человек в системе природы. Специфика проявления биологического и социального в человеке.
  2. Экспериментальное обоснование триплетного кода в опытах Ниринберга. Формы взаимодействия аллельных и неаллельных генов. Закон умножения вероятностей в генетике. Применение.
  3. БИЛЕТ № 22, Клетка как открытая система. Организация потока вещества, энергии, инф..
  4. Человеческие расы. Критика расизма, евгеники, социал-дарвинизма. Позитивные аспекты евгеники.
  5. БИЛЕТ № 23, Мейоз. Оплодотворение. Партеногенез. Кроссинговер и..
  6. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медико-генетические аспекты семьи.
  7. Характеристика споровиков. Систематика и характеристика 4-х видов малярийного плазмодия, бесполая часть цикла возбудителя малярии. Борьба с малярией.
  8. Систематическое положение, морфологическая диагностика и эпидемиологическое значение вшей и блох.
  9. Кодирование и реализация биологической информации в клетке. Кодовая система ДНК. Кодовая система белка.
  10. Биологический возраст.
  11. БИЛЕТ № 27, 1. Постнатальный онтогенез и его периоды. Роль эндокринных желез: щито..
  12. Характеристика круглых червей. Острица.

Обмен веществ (метаболизм), совокупность химических процессов, обеспечивающих жизнедеятельность организма.

Обмен веществ является одним из основных свойств живой материи, необходимым условием жизни. В процессе обмена веществ происходит как расходование свободной энергии, так и накопление ее в сложных органических соединениях или в форме электрических зарядов на поверхности клеточных мембран.

Принципиальное отличие обмена веществ в живом организме от обмена в неживых системах заключается в различной направленности термодинамических процессов. В результате обмена в неживой природе происходит разрушение вещества, с уменьшением количества свободной энергии. В живом организме в результате обмена веществ накапливается энергия, за счет которой осуществляются пластические процессы, рост и развитие организма.

Физические и химические процессы в живом организме не теряют своего внутреннего качественного содержания, но существенно изменяются в направлении, определяемом законами развития живой материи. Накопление свободной энергии стало возможно только в живом организме. Эта качественно новая форма обмена энергии появилась с момента выделения живого из неживого.

Новая форма обмена с антиэнтропийной направленностью явилась предпосылкой возникновения жизни, определила способность живого противостоять разрушительному влиянию внешней среды. Удержание этого антиэнтропийного состояния возможно только на основе постоянного самообновления, обмена.

В живых организмах любой процесс сопровождается передачей энергии. Энергию определяют как способность совершать работу. Специальный раздел физики, который изучает свойства и превращения энергии в различных системах, называется термодинамикой. Под термодинамической системой понимают совокупность объектов, условно выделенных из окружающего пространства.

Термодинамические системы разделяют на изолированные, закрытые и открытые. Изолированными называют системы, энергия и масса которых не изменяется, т.е. они не обмениваются с окружающей средой ни веществом, ни энергией. Закрытые системы обмениваются с окружающей средой энергией, но не веществом, поэтому их масса остается постоянной.

Открытыми системами называют системы, обменивающиеся с окружающей средой веществом и энергией. С точки зрения термодинамики живые организмы относятся к открытым системам, так как главное условие их существования - непрерывный обмен веществ и энергии. В основе процессов жизнедеятельности лежат реакции атомов и молекул, протекающие в соответствии с теми же фундаментальными законами, которые управляют такими же реакциями вне организма.


Согласно первому закону термодинамики энергия не исчезает и не возникает вновь, а лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что вся энергия, в конце концов, переходит в тепловую энергию, и организация материи становится полностью неупорядоченной. В более строгой форме этот закон формулируется так: энтропия замкнутой системы может только возрастать, а количество полезной энергии (т.е. той, с помощью которой может быть совершена работа) внутри системы может лишь убывать. Под энтропией понимают степень неупорядоченности системы.

Неизбежная тенденция к возрастанию энтропии, сопровождаемая столь же неизбежным превращением полезной химической энергии в бесполезную тепловую, заставляет живые системы захватывать все новые порции энергии (пищи), чтобы поддерживать свое структурное и функциональное состояние. Фактически способность извлекать полезную энергию из окружающей среды является одним из основных свойств, которые отличают живые системы от неживых, т.е. непрерывно идущий обмен веществ и энергии является одним из основных признаков живых существ. Чтобы противостоять увеличению энтропии, поддерживать свою структуру и функции, живые существа должны получать энергию в доступной для них форме из окружающей среды и возвращать в среду эквивалентное количество энергии в форме, менее пригодной для дальнейшего использования.

Особенности биоэнергетики.

С позиций термодинамики метаболизм представляет собой совокупность процессов, в которой реакции, потребляющие энергию из внешней среды , сопрягаются с энергодающими реакциями, что позволяет живым существам оказывать постоянное сопротивление нарастанию энтропии. Выяснение биохимических механизмов, приводящих к генерации различных форм биологической энергии, является предметом биоэнергетики. Источником энергии служат реакции, в ходе которых соединения, содержащие атомы углерода в высоковосстановленном состоянии, подвергаются окислению, а специальные дыхательные переносчики присоединяют протоны и электроны (восстанавливаются) и в таком виде транспортируют атомы водорода к дыхательной цепи.

2. Генетика и теория эволюции Ч. Дарвина. Взаимоотношения эволюционного процесса и отбора в популяциях (С. С. Четвериков). Закон Харди-Вайнберга. Содержательные и математические выражения.

Использование для расчёта частот гетерозиготного носительства аллелей у людей. Популяция и её генофонд (аллелофонд).

Генетика (от греч. génesis — происхождение) — наука о законах наследственности и изменчивости Предложен в 1906 г. английским биологом Бейтсоном.

Задачи генетики:
1. В области с/х. - выведение новых сортов растений и новых пород животных, а также усовершенствование существующих
2. Медицинская генетика - разработка методов диагностики наследственных заболеваний, разработка их профилактики
3. Генная инженерия

Предмет и задачи генетики человека. Генетика человека, или медицинская генетика, изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни.

Основные положения эволюционного учения Ч. Дарвина

Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.

Сущность эволюционного учения заключается в следующих основных положениях:

1. Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.

2. Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.

3. В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

4.

Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Главная заслуга Дарвина в том, что он установил механизм эволюции, объясняющий как многообразие живых существ, так и их изумительную целесообразность, приспособленность к условиям существования. Этот механизм — постепенный естественный отбор случайных ненаправленных наследственных изменений.

Взаимоотношения эволюционного процесса и отбора в популяциях (С. С. Четвериков)

Популяционные волны – изменение численности особей в популяции. С.С. Четвериков назвал их волнами жизни. Колебания численности особей могут привести к временному изменению их ареала. В результате организмы оказываются в нетипичных условиях, что может повлечет за собой усилении мутационного процесса. Рост численности популяций приводит к их слиянию и обмену генофондом. В небольших популяциях большую роль играет дрейф генов. Случайное повышение концентрации некоторых мутаций приводит дает новый материал для отбора. Таким образом, популяционные волны наряду с мутационным процессом являются поставщиками элементарного эволюционного материала.

Закон Харди-Вайнберга:

Закон Харди — Вайнберга — это закон популяционной генетики — в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:

p² + 2pq + q² = 1

Где p² — доля гомозигот по одному из аллелей; p — частота этого аллеля; q² — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот

Использование формул закона Харди-Вайнберга позволяет рассчитать генетический состав популяции в данное время и определить возможные тенденции его изменений, можно вычислить насыщенность популяции определенными генами, рассчитать частоты гетерозиготного носительства аллелей у людей. При медико-генетических исследованиях популяций расчеты по закону Харди-Вайнберга нашли широкое применение. Но в тех случаях, когда популяции ограничены по численности, закон Харди-Вайнберга не действует, так как основан на статистических закономерностях, которые не играют роли в случае малых чисел.

Практическое значение закона Харди–Вайнберга

1. В здравоохранении – позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребенка.

 
 

2. В селекции – позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).

3. В экологии – позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчетных величин можно установить эффект действия экологических факторов

Элементарной единицей эволюции является популяция (каждая популяция обладает собственной эволюционной судьбой).

Популяция – это…

– самовоспроизводящаяся группировка особей одного вида,

– более или менее изолированная от других подобных группировок,

– населяющая определенный ареал в течение длительного ряда поколений,

– образующая собственную генетическую систему,

– формирующая собственную экологическую нишу

Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы и др.). Для описания генетической структуры популяций используются термины «аллелофонд» и «генофонд».

Аллелофонд популяции – это совокупность аллелей в популяции.

В простейшем случае рассматриваемый признак определяется двумя аллелями одного гена: А и а. Такое определение признака называется моногенным диаллельным. В этом случае структура аллелофонда описывается уравнением: pA+qa=1.

В этом уравнении символом pA обозначается относительная частота аллеля А, символом qa – относительная частота аллеля а.

3. Общая характеристика типа простейших. Паразитические представители классов саркодовых и жгутиконосцев. Представители класса жгутиконосцев – возбудители природно-очаговых заболеваний.

К типу простейших относятся организмы, тело которых состоит из цитоплазмы и одного или нескольких ядер. Протоплазма в теле простейших образует одну клетку, поэтому их называют одноклеточными (Monocytozoa). Клетка простейшего – самостоятельная особь, выполняющая все функции целостного организма. Части тела простейшего, выполняющие различные функции, называют органоидами. Имеются органоиды 2 типов: специального и общего назначения. Органоиды общего назначения характерны для любых клеток (митохондрии, центросомы, рибосомы), органоиды спецназначения выполняют жизненные функции одноклеточных как самостоятельных организмов. Органоидами движения могут быть – жгутики, реснички, ундулирующая мембрана, аксостиль. Органоиды пищеварения состоят из пищеварительных вакуолей. Характерной чертой является прохождение сложных циклов развития. Многие простейшие в неблагоприятных условиях образуют цисты. В инцистированном состоянии легко расселяются. При попадании цист в благоприятные условия происходит эксцистирование.

Систематика:

Тип: Protozoa

Класс: Sarcodina

Класс: Flagellata

Класс: Sporozoa

Класс: Infuzoria.

Класс Саркодовые. Основная характерная черта – способность образовывать псевдоподии, или ложноножки, служащие для движения и захватывания пищи.

Класс Жгутиковые. Характерно наличие 1, 2, а иногда и более жгутиков, служащих для передвижения. Иногда имеется ундулирующая мембрана. Форма тела обычно постоянная. Являются гетеротрофами.

 

Предыдущая статья:Ланцетовидный сосальщик. Систематическое положение, морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики, профилактика. Следующая статья:Человек в системе природы. Специфика проявления биологического и социального в человеке.
page speed (0.0121 sec, direct)