ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 4 страница
229
Таблица 8.5
Итак, мы получили значения прибыли, а нас интересуют потери.
Решение. Представим функцию потерь L(Q, a) в виде разности между наибольшей прибылью и прибылью, которая может быть получена во всех остальных случаях (табл. 8.6).
Статистик должен получить дополнительную информацию о состояниях природы при наблюдениях погоды в апреле, когда проводится посадка.
Таблица 8.6
Пусть X = {x1, x2} - множество наблюдений, где х1 и х2 - наблюдается большое и малое количество осадков соответственно.
В зависимости от состояния природы Qj и наблюдения погоды хi получим следующие значения условных распределений:
По двум решениям статистика а1 и а2 и результатам наблюдения получаем четыре нерандомизированные функции решения d Î D (табл. 8.7).
Таблица 8.7
В статистической игре (W, D, R), которая посвящена выбору участков земли для посадки картофеля, определим функции риска R(Q, d):
Полученные результаты функций риска R(Q, d) представим в табл. 8.8, откуда видно, что функция решения d2 доминирует над функцией d3. Следовательно, d2 недопустима. Она не относится к подмножеству допустимых функций решения. Мы в этом убедимся при расчете байесовских рисков.
Таблица 8.8
Будем считать, что в рассматриваемом районе априорное распределение состояний природы приводит к одинаковым шансам для сухого и влажного лета при исследовании состояний природы. Значит, Р(Q1) = 0,5; P(Q2) = 0,5.
Вычислим байесовский риск r(x, d):
Минимальный байесовский риск наблюдается для функции d3, что не противоречит выводу, сделанному из табл. 8.8.
Вывод. Нерандомизированная функция решения d3, которая включает решение для d(x1) = а2 и d(x2) = а1, является байесовской функцией решения. Это оптимальная стратегия статистика: в рассматриваемых условиях, если весной много осадков (x1), принимается решение а2 о том, что картофель нужно сажать на сухих участках земли А2. Если весной мало осадков (x2), принимается решение а1 о посадке картофеля на участках А1, где влажность почвы большая.
Задача 8.3. Планирование участков земли под посевы картофеля методом линейного программирования. В задаче 8.2 мы получили оптимальное байесовское решение d3. Теперь попробуем получить минимаксную, более осторожную стратегию.
Минимаксную функцию решения следует искать как смешанную стратегию среди рандомизированных функций решения, потому что матрица значений функций риска R(Q, d) для нерандомизированных функций решения d Î D не имеет седловой точки.
Применяя метод линейного программирования и учитывая, что при оптимальном решении ограничения записываются как равенства, получаем из табл. 8.8 при ненулевых значениях h1 и h3 систему уравнений, которая включает цену игры v:
В результате решения этой системы уравнений получим:
Вывод.
Минимаксная стратегия, еще более осторожная, чем оптимальная байесовская, для сельскохозяйственного предприятия заключается в использовании стратегий d1 и d3 с вероятностью соответственно 0,04 и 0,96.Как это применять на практике?
Если весной наблюдается х1 (большое количество осадков), то осуществляется случайный выбор с вероятностями 0,04 и 0,96 одного из решений: а1 или а2. При наблюдении х2 (малое количество осадков весной) принимается решение a1 о посадке картофеля на влажных участках А1.
8.3. СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ПАРТИИ ГОТОВЫХ ИЗДЕЛИЙ И ВЕРОЯТНОСТЬ ПЕРЕБОЕВ ПРОИЗВОДСТВА
На основе статистических планов приемки продукции всегда должно быть известно, сколько изделий следует случайным образом отобрать для статистического контроля и при каких условиях принимается решение о браковке или приемке партии.
Планов контроля имеется большое множество, однако благодаря своей простоте часто применяется одноступенчатый статистический план премки k|n, где п - объем выборки; k - приемочное число. Если из проверенных изделий число дефектных Z не будет превышать k, партия принимается. Значит, k - допустимое число дефектных в выборке из п изделий.
Представитель торгового предприятия при Z £ k считает партию хорошей и принимает ее на основе анализа выборки. Затем производитель покрывает стоимость каждого обнаруженного в переданной партии бракованного изделия путем замены, бесплатного ремонта или другим путем, означенным в договоре.
Если Z > k, то партия не принимается торговым предприятием, а производитель осуществляет сплошную проверку партии и выявляет дефектные изделия.
Задача 8.4. Выбрать оптимальное критическое число k. Значение k может быть определено при помощи статистической игры.
Введем обозначения:
W (WÎW), доля дефектных изделий, - состояние природы Q;
N - объем партии изделии;
W = [0,1] - интервал от 0 до 1 с включением границ этого интервала;
А = {а1, a2}- множество решении статистика, где а1, а2 - решения о приемке и о браковке партии со сплошным ее контролем соответственно;
С1 - затраты на проверку одного изделия;
С2- сумма, уплачиваемая производителем за каждое обнаруженное дефектное изделие после приемки партии.
Функция потерь
где С1п - стоимость контроля выборочной совокупности изделии в процессе контроля;
C2(N–n)W - сумма, выплачиваемая производителем за изделия, когда они окажутся дефектными после приемки;
С1 n + С2(N–п) - затраты на сплошной контроль, если партия не была принята.
Итак, стратегическая игра будет иметь вид (W, A, L). Для определенности будем считать:
• торговая фирма оплачивает только исправные изделия, а дефектные заменяются исправными;
• при большой партии распределение вероятностей случайной переменной - числа дефектных изделий Z - подчиняется биномиальному закону. Функция вероятности зависит от действительной доли бракованных изделий в принимаемой партии W:
• контролер наблюдает число Z в выборке объема п;
• d(Z) = а - статистическая нерандомизированная функция решения контролера. Контролер может принять одно из двух значений: a1 (принять) или a2 (не принять партию).
Однако нам необходимо осуществить оптимальный выбор критического числа k, поэтому перейдем к статистической игре. В этой игре используем информацию о числе Z забракованных изделий в выборке объемом п; распределение Z зависит от состояния природы W - доли дефектных изделий.
Решение. Для состояния природы W и статистической нерандомизированной функции решения d(Z), определяющей критическое число k при контроле партии готовых изделий, можно в статистической игре (W, D, R) найти функцию платежей или функцию риска R(W, d):
Это выражение можно раскрыть, используя биномиальное распределение.
Далее в качестве целевой функции d(Z), определяющей оптимальное критическое число k выберем байесовскую нерандомизированную функцию. Пусть процесс производства является отлаженным, тогда доля дефектных изделий в партии W будет иметь бета-распределение, заданное на интервале [0,1]. В зависимости от принятых параметров р и q можно определить априорное распределение доли дефектных изделий W в принимаемых партиях.
Таким образом, априорным распределением x состояний природы W принимается бета-распределение с функцией плотности
Известно, что существует связь между бета- и гамма-функциями:
Байесовский риск при этом распределении будет
Этот байесовский риск следует минимизировать относительно k. При известных размерах партии N, выборки п, затрат C1 и С2, параметров априорного бета-распределения р и q байесовский риск будет только функцией k:
r(x, d) = f(k).
Теперь нужно найти такое натуральное k, чтобы удовлетворялись неравенства
f(k)£ f(k+1) и f(k)£ f(k–1)
Рассмотрим неравенство f(k)£ f(k+1), из которого следует, что f(k+1) – f(k) ³ 0.
Используя связи между бета- и гамма-распределениями и формулу гамма-функции Г(n) = (n–1)! , где (n–1)! - факториал, получим f(k+1) – f(k) ³ 0, если С2(р + k + 1)/(р + q + п) – С1 £ 0.
Значит, (p+k+1) ³ (p+q+n) и неравенство f(k) £ f(k+ 1) выполняется при k ³
(p+q+n) - (p+1).
Обратимся к неравенству f(k–1) – f(k) ³ 0 и найдем значение k, для которого оно выполняется. При этом необходимо преобразовать байесовский риск r(x, d) = f(k), после чего получаем неравенство f(k–1) – f(k) ³ 0, которое выполняется, если С2 р + k)/(p + q + п) – C1 £ 0. Тогда (p + k) £ (p+q+n), т. е.

Вывод. С помощью нерандомизированной байесовской функции получаем решение при одноступенчатом статистическом плане приемки партии изделий, если известно распределение доли дефектных изделий в партии, т.е. априорное распределение состояний природы.
Пример 8.1. Производитель продает торговой фирме большую (п = 100) партию изделий. По договору представитель торговой фирмы отбирает случайным образом п = 30 изделий. Контроль проводится по согласованной программе при одноступенчатом плане. Стоимость проверки одного изделия C1 = 180 руб., стоимость исправного изделия С2 = 2 000 руб.
Требуется найти критическое число k при предположении, что доля дефектных изделий W подчинена бета-распределению.
Предполагаем, что доля бракованных изделий при отлаженном производстве близка к нулю, поэтому g(W) будет иметь большое значение. Пусть аргументы бета-функции B(p,q) равны: p=1, q=5.
Нужно построить график распределения и определить минимальное число k. (Функция на графике при росте доли дефектных изделий будет быстро стремиться к нулю.)
Решение. Определим B(p,q):
Используя значения доли W (пусть W = 0; 0,05; 0,1; 0,2; ...,0,9;1), получаем:
Составим таблицу распределения g{W) при значении аргументов бета-функции: q = 5, р = 1 (табл. 8.9).
Таблица 8.9
Найдем критическое число k при п = 30, которое должно удовлетворять двойному неравенству:
Подставив численные значения параметров в эти неравенства, получаем k:
0,09*36 - 1 - 1 £ k £ 0,09*36 - 1.
1,24 £ k £ 2,24.
Следовательно, k = 2 .
Вывод. Критическое число равно 2, статистический план запишется (2|30).
Партия будет принята при числе бракованных в выборке из 30 изделий, не превышающем 2 шт. В противном случае партия будет забракована.
Пример 8.2. Для условий примера 8.1 при плане (2|30) подсчитать функцию потерь при: k = 3; k = 2 и возможном отказе в принятой партии двух изделий из числа непроверенных (N-n), если N = 100; k = 2 и возможном возврате изделий из числа непроверенных, если W= 0,05.
Решение. Определим функцию потерь при k = 3, полагая согласно рис. 8.1, что р = 1:
Рис. 8.1. Бета-распределение при р = 1,q=5
Найдем функцию потерь при k = 2, когда партия была принята, но затем в торговой фирме было обнаружено 2 неисправных изделия из числа непроверенных при сдаче:
L(W, a1) = 180n +2C2+2C2 = 180*30 + 4*2 000 = 5 400 + 8 000 = 13400 руб.
Вычислим функцию потерь при k = 2 и возможных отказах при W =0,05:
L(W, а1) = 180n + 2C2 + C2(N - n) = 5 400 + 4 000 + 70*0,050C2 = 9400 + 3,5*2000 = 16400 руб.
Поскольку 3,5 отказа невозможны (могут быть 3 или 4), добавляем (отнимаем) половину стоимости изделия и получаем:
L(W, a1) = (16400 ± 1000) руб.
Пример 8.3. Оставим условия примера 8.1, но изменим объем выборки. Вместо п = 30 примем п = 45. Требуется определить критическое число k, если оно удовлетворяет двойному неравенству при нерандомизированной байесовской функции решения r(x, d)=f(k):
(p+q+n) – p – 1 £ k £
(p+q+n) – p.
Решение. Запишем в принятых выше обозначениях условия: С1 = 180 руб.; С2 = 2 000 руб.; р = 1; q = 5, п = 45:
(p+q+n)=1+5+45=51; =
=0,09.
Вычислим минимальное значение k:
0,09*51 - 1 - 1 £ k £ 0,09*51 - 1;
2,59 £ k £ 3,59.
Таким образом, k = 3.
Вывод. Партия будет принята при k == 1, 2 или 3, а при k = 4 или более партия изделии будет забракована, 4 бракованных изделия будут заменены в выборке на годные, остальные 55 из 100 изделий будут проверены.
Пример 8.4. Оценить возможности сбоев производства из-за нарушения кооперированных поставок.
С помощью методов математического программирования можно составить оптимальный план производства. Однако этот план при нерегулярности кооперированных поставок смежников может быть фактически не реализован.
В данной ситуации возможно вычислить вероятность регулярности кооперированных поставок, что должно соответствовать вероятности отсутствия сбоев производства.
Введем обозначения:
Q (состояние природы) - вероятность отсутствия сбоев производства Q Î W = [0,1];
А = [0,1] - область решения статистика;
а - оценка вероятности Q.
Примем в виде квадратичной функцию потерь L(Q, a)= (Q - а)2. Оценим вероятность Q по информации за предыдущий месяц. Пусть W и N - события, заключающиеся в том, что в предыдущем месяце были соответственно выполнены и не выполнены кооперированные поставки. Пространство выборок Х= {W, N}; d - нерандомизированная функция решения статистика, отображающая пространство выборок Х в пространство решений А.
Решение. Функция решения может быть записана следующим образом:
d(W) = a1; d(N) = a2; a1 Î А; а2 Î А.
Имеет место статистическая игра (W, D, R).
Опишем функцию риска:
R(Q, d) = ML(Q, a).
Считаем, что вероятности событии будут:
P{W|Q} =Q; P{N|Q} = 1 - Q.
Запишем функцию риска через а и Q.
Предположим, что для ряда месяцев вероятность отсутствия сбоев кооперированных поставок - это случайная величина с бета-распределением, имеющим параметры р > 0 и q > 0.
Функция плотности распределения вероятностей будет иметь вид:
Вид данной функции плотности распределения вероятностей можно определить, если примем бета-распределение с параметрами р = 3 и q = 1 (рис. 8.2 и табл. 8.10).
Рис. 8.2. Бета-распределение при р = 3, q =1
Таблица 8.10
Q | 0,25 | 0,5 | 0,75 | |
g(Q) | 0,1875 | 0,75 | 1,6875 |
Бета-распределение является априорным распределением x состояний природы QÎW = [0,1]. Определим байесовский риск:
где M(Q) = m1, и М(Q2) = т2 - первый начальный и второй начальный моменты Q при бета-распределении с функцией плотности g(Q) соответственно.
Известно, что
Чтобы определить выражения для получения a1 и a2, необходимо минимизировать байесовский риск для априорного распределения x. Продифференцируем r(x, d) по a1 и a2 и результаты приравняем к нулю:
Вывод. Вероятность бесперебойной работы определится как т2/т1, если в прошлом месяце не было срывов кооперированных поставок. В противном случае вероятность бесперебойной работы предприятия будет равна (т1 – m2)/(1 – m1).
Пример 8.5. Оценить вероятность отсутствия перебоев в кооперированных поставках в данном месяце, если события W и N состоят соответственно в отсутствии и наличии срыва поставок в предыдущем месяце.
Априорное распределение - это бета-распределение с параметрами р = 3, q = 1. В данном распределении значения Q, близкие к единице, имеют большую плотность, чем значения, близкие к нулю.
Решение. Определим
Вычислим
Определим вероятность бесперебойной работы предприятия при отсутствии срыва поставок в предыдущем месяце:
Оценим вероятность бесперебойной работы предприятия, если в прошлом месяце было событие N - срыв кооперированных поставок:
Выводы. Вероятность бесперебойной работы предприятия в данном месяце при условии выполнения договорных обязательств по кооперированным поставкам, если в прошлом месяце также не было срывов, равна 0,8.
Если же в прошлом месяце был срыв в кооперированных поставках, то вероятность бесперебойной работы предприятия снизится в этом месяце до 0,6.
8.4. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО ЗАПАСА ПРОДУКЦИИ ТОРГОВОЙ ФИРМЫ НА ОСНОВЕ СТАТИСТИЧЕСКИХ ДАННЫХ
Пусть Q - рыночный спрос на продукт торговой фирмы для фиксированного периода (день, неделя, месяц). Воспримем это как спрос игрока 1. Этот спрос может быть любым действительным положительным числом. Область состояний W = [0, ¥]. Продаваемый продукт оценивается, например, в килограммах и может заказываться в любом количестве. Нереализованный в данном периоде продукт не может быть продан в следующем периоде, так как теряет за время хранения свои потребительские качества. Значение QÎW заранее неизвестно.
Введем обозначения: а - запас продукта на некоторый период. Следовательно, считаем, что множество решений фирмы А = [0, ¥]; аÎА - конкретное решение фирмы (игрока 2), принимаемое в статистической игре с природой, которая определяет действительный спрос Q на продукт; L(Q, a) - функция потерь. Она является функцией платежей в исходной стратегической игре (W, A, L); k1 - себестоимость + дополнительные затраты на хранение 1 кг продукта, который не был продан в установленное время, так как спрос на него оказался меньше прогнозируемого;
k2- потеря прибыли на 1 кг продукта, обусловленная отсутствием товара, спрос на который превысил заказанное количество.
Принимая указанные обозначения, запишем кусочно-линейную функцию потерь фирмы:
Стратегическую игру (W, A, L) можно преобразовать в статистическую, если получить дополнительную статистическую информацию о спросе на продукт QÎW. Действительный спрос по периодам представлен заказчиком. Это вектор
который в различные периоды времени представляет разные размеры спроса. Пусть а = d(x) - статистическая нерандомизированная функция решения. Значение функции, определяющей оптимальное решение а об уровне запаса, найдем с помощью байесовской функции решения.
Известна функция действительного спроса на товар, соответствующего статистическому наблюдению, т. е. .
Функцию априорного наблюдения G(Q| ) распределения спроса (состояний природы) обозначим F(Q).
Имеет место теорема: «Если, решая задачу, поставленную в форме статистической игры, статистик (игрок 2) провел эксперимент, наблюдая случайную величину Х с функцией условного распределения G(Q| ) или [F(Q)], и получил результат х, то неслучайная байесовская функция решения относительно некоторого априорного распределения x состояний природы равна а = d(x), где а Î А - решение, минимизирующее ожидаемое значение функции потерь L(Q, а) в условном апостериорном распределении состояний природы, заданном функцией распределения G(Q| x)».
Согласно данной теореме нужно минимизировать математическое ожидание
С использованием формулы (8.1) можно определить математическое ожидание при апостериорном распределении спроса Q:
Минимизируя математическое ожидание функции потерь (8.2) относительно о, получим:
где f(a) - плотность в точке а апостериорного распределения спроса. В соответствии с необходимым условием (8.3) получим уравнение
откуда
Итак, с помощью байесовской функции получено выражение для оптимального запаса. Оно равно числу а0, удовлетворяющему равенству
где F(a0) -функция апостериорного распределения спроса Q на продукт.
Результат (8.4) с учетом (8.5) означает, что для a0 в распределении спроса Q должно выполняться условие . Значит, a0 должно быть квантилем порядка
апостериорного распределения спроса Q.
Для вычисления оптимального запаса а0 данного продукта на определенный период времени нужно:
1. Знать параметры k1 и k2, входящие в функцию потерь L(Q, a).
2. На основе статистических наблюдений получить апостериорное распределение спроса на товар.
3. С помощью функции этого распределения определить квантиль порядка .
Если, в частности, k1 = k2, то оптимальный уровень запаса a0 будет соответствовать равенству F(a0) = . Другими словами, оптимальный уровень запаса представляет собой медиану в апостериорном распределении спроса Q.
Распределение близко к нормальному N(M, d), где М - математическое ожидание, d - среднее квадратичное отклонение.
Значение a0 (или квантиль порядка ) можно определить по таблице нормированного нормального распределения.