ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 3 страница
222
Принцип Гурвица. Этот принцип является упрощенным вариантом принципа Байеса - Лапласа. Если известны вероятности отдельных состояний, то берут среднее арифметическое результатов при наилучшем решении. Иногда, если существует возможность определить вес наихудшего и наилучшего решений, то используют их взвешенную среднюю арифметическую.
Проиллюстрируем применение данного принципа на примере строительства предприятий при четырех разных состояниях природы и наличии четырех разных типов предприятий.
Задача 6.2. Имеются определенные средства на возведение предприятий. Необходимо наиболее эффективно использовать капиталовложения с учетом климатических условий, подъездных путей, расходов по перевозкам и т.д. Сочетание этих факторов по влиянию на эффективность капиталовложений можно разбить на четыре состояния природы B1, В2, В3, В4. Типы предприятий обозначим А1, А2, А3, А4. Эффективность строительства определяется как процент прироста дохода по отношению к сумме капитальных вложений. Информацию, отражающую постановку задачи, представим в табл. 6.2.
Таблица 6.2
Варианты решений
1. Решение по принципу стратегических игр, по принципу максимина: = 4 . Нужно строить предприятие А3.
Изменим условия задачи и предположим, что в табл. 6.2 отражены затраты на строительство предприятий, тогда выбор типа предприятий следует осуществить по принципу минимакса: =9. Нужно строить предприятие А1 или А4.
2. Решение по принципу Гурвица.
Если известны все вероятности, определяющие состояния природы, сделаем выбор с помощью среднего арифметического лучшего и худшего результатов.
Согласно табл. 6.2 это будет рекомендация строить предприятие А2, обеспечивающее максимальную среднюю эффективность Ф = = 8.
3. Применим принцип Байеса при равных вероятностях состояний природы Р(В1)=Р(В2)=Р(В3)=Р(В4)=1/4. Определим рентабельность, соответствующую решению А1, т. е. М1:
Далее определяем М2, М3, и М4.
Выводы. Предполагая, что все вероятности состояний природы равны, следует строить предприятие А3, так как M3 = 7,5 = max (M1, M2, M3, M4). Отметим, что принцип Байеса-Лапласа имеет смысл применять, если возможно оценить вероятности отдельных состояний природы. При этом необходимо, чтобы решения также повторялись многократно.
Когда события повторяются многократно, действует закон больших чисел, согласно которому достигается максимальный средний результат.
При единичных решениях принцип Байеса - Лапласа не следует применять.
Принцип Гурвица фактически является упрощением байесовских оценок. Гурвиц допускает, в частности, при отсутствии информации о вероятностях возникновения отдельных состояний природы брать среднее арифметическое значение результатов наилучшего и наихудшего решений.
6.2.2. МАКРОЭКОНОМИЧЕСКИЕ РЕШЕНИЯ
При применении теории статистических игр на предприятии, в фирме бывает возможным получить дополнительную статистическую информацию, которая позволяет перейти от стратегической к статистической игре с природой. Очень часто при возможности многократного повторения как состояний природы, так и решений статистика мы можем принимать минимаксные байесовские решения.
Для макроэкономических задач значительно реже удается получать информацию о состояниях природы.
Кроме того, имея распределение вероятностей ее состояний, мы не всегда можем этой информацией воспользоваться. Принятие решения может носить одноразовый характер. В этой ситуации наилучшая байесовская стратегия при многократном принятии решения утрачивает свои оптимизационные свойства.Задачи, решаемые в условиях неопределенности, имеющие характер игры с природой, делятся на два типа:
1) в условиях полной неопределенности, когда отсутствует возможность получения дополнительной статистической информации о состояниях природы; основной моделью при этом служит стратегическая игра (W, A, L), которая не преобразуется в статистическую;
2) в условиях риска, если существует возможность сбора дополнительной статистической информации о распределении состояний природы; эти задачи можно преобразовать к статистической игре (W, D, R), в которой функции риска рассматриваются как платежи.
Рассмотрим практический пример.
Задача 6.3. Получение лицензии на новую продукцию.
Требуется выбрать лучшую лицензию на выпуск легкового автомобиля у иностранных фирм. Имеются четыре предложения, следовательно, множество решении А = {а1, а2, а3, а4}, где а1 -решение о покупке лицензии у инофирмы Ai (i = ).
Фирмы требуют неодинаковые суммы за лицензии в зависимости от различных затрат на организацию производства и издержек эксплуатации.
Известно, что основным требованиям владельцев автомобилей (эстетика, количество мест в салоне, скорость) удовлетворяют все четыре фирмы. В результате главным критерием являются затраты, связанные со сделкой.
Пусть на основе экономического расчета вычислена эффективность покупки каждой из четырех лицензий. Эта эффективность зависит от длительности периода, в течение которого можно будет выпускать автомобили по лицензии, учитывая уровень их рентабельности и соответствия последним достижениям науки и техники в области автомобилестроения. Множество состояний природы , где Q1, Q2 - рентабельность и соответствие техническому уровню выпущенных по приобретенной лицензии первого и второго автомобилей, достигаемые соответственно через 15 и 25 лет.
Представим формулу экономической эффективности:
где У - продажная цена автомобиля;
С - себестоимость;
W- выигрыш игрока 1, в данном случае статистика, представляющего автомобильную промышленность.
Отразим в табл. 6.3 полученные значения эффективности W(Q, a).
Таблица 6.3.
О стратегиях природы нет информации, и ее невозможно получить.
Решение нужно найти при полной неопределенности, так как нет данных для перехода от стратегической игры к статистической.
Применим максиминный критерий Вальда.
Для этого перепишем табл. 6.3 и найдем минимальные значения по строке и максимальные - по столбцу. Это определит матрицу игры (табл. 6.4).
Таблица 6.4
Матрица игры (W, A, W) имеет седловую точку, равную 22 %, поскольку
Итак, оптимальной нерандомизированной максиминной стратегией статистика (игрока 1), представляющего интересы автомобильной промышленности, будет решение а2, что соответствует покупке лицензии у фирмы А2 на производство легкового автомобиля.
Это наиболее осторожная стратегия в игре с природой при отсутствии дополнительной статистической информации. При этом в качестве функций платежей была принята эффективность сделки W(Q , a) = 22.
Глава 7 ИНВЕСТИЦИОННЫЕ РЕШЕНИЯ
7.1. ВЫБОР ОПТИМАЛЬНОГО ВАРИАНТА КАПИТАЛОВЛОЖЕНИЙ ПРИ СТРОИТЕЛЬСТВЕ ЭЛЕКТРОСТАНЦИЙ
Задача 7.1. Необходимо построить в регионе электростанцию большой мощности. В данном регионе имеются возможности:
• а1 - построение большого водохранилища и гидроэлектростанции;
• a2 - сооружение тепловой электростанции на основном (газовом) топливе и резервном (мазуте);
• a3 - сооружение атомной электростанции.
Возможные решения А = {а1, а2, а3}. Экономическая эффективность каждого варианта рассчитана проектным институтом, который учитывал затраты на строительство и эксплуатационные расходы.
На эксплуатационные расходы гидроэлектростанции влияют климатические условия, например, такие, как погодные условия, определяющие уровень воды в водохранилищах.
Большое число случайных факторов воздействует на экономическую эффективность тепловой станции: цены на мазут и газ, срывы поставок мазута из-за неритмичности работы транспорта в зимнее время, особенно во время снегопадов и продолжительных морозов.
Экономическая эффективность атомной электростанции будет зависеть от больших затрат на строительство и устойчивости агрегатов и системы управления во время эксплуатации.
Таким образом, погодные условия будут в основном сказываться на расходах по эксплуатации гидроэлектростанции и тепловой электростанции. Следовательно, на эффективность тепловой электростанции будут влиять как погодные условия, так и цены на газ и мазут.
Случайные факторы, от которых зависит экономическая эффективность вариантов капиталовложении, объединим в четыре возможных состояния природы - W = (Q1, Q2, Q3, Q4) с учетом окупаемости:
Q1 - цены на газ и мазут низкие и климатические условия благоприятные;
Q2 - цены на газ и мазут высокие и климатические условия благоприятные;
Q3 - цены на газ и мазут низкие и климатические условия неблагоприятные;
Q4 - цены на газ и мазут высокие и климатические условия неблагоприятные.
Решение. Представим в табл. 7.1 полученные расчеты эффективности W(Q, a).
Таблица 7.1
В стратегической игре (W, A, W) игрок 1 - статистик, а игрок 2 - природа.
Матрица игры имеет седловую точку, равную 30 ед.:
Если бы не было дополнительной статистической информации, то на этом игра закончилась бы решением a3 - строить атомную электростанцию. Это было бы осторожным решением.
С помощью имеющихся временных рядов можно получить апостериорную информацию, поскольку о влиянии на цены за газ, мазут таких состоянии, как наводнения, засухи, морозы, сильные снегопады и т.п., существует статистическая информация.
По данным многолетней статистики цен и состояний получены оценки апостериорного распределения состояний природы. Данные непосредственного наблюдения состояний природы позволили получить апостериорное распределение состояний природы:
P(Q1) = 0,15; Р(Q3) = 0,20;
P(Q2) = 0,30; P(Q4) = 0,35.
Имея апостериорное распределение состояний природы, можно преобразовать стратегическую игру (W, A, W) в статистическую, в которой платеж игроку (статистику) будет определен как математическое ожидание в данном распределении состояний природы M[W(Q, a)].
Математическое ожидание максимизирует оптимальная байесовская стратегия статистика, что эквивалентно минимизации байесовского риска в статистической игре, в которой функция потерь L(Q, a) = -W(Q, a).
Для отдельных решений получим математические ожидания M[W(Q, a)]:
M[W(Q, a1)] = 50*0,15 + 50*0,30 + 25*0,20 + 25*0,35 = 36,25;
M[W(Q, а2)] = 40*0,15 + 25*0,30 + 35*0,20 + 20*0,35 = 27,50;
M[W(Q, a3)]=30*0,15+30*0,30+30*0,20+30*0,3 5=30,00;
max M[W(Q, a)]=M[W(Q, a1)]=36,25.
Вывод. Оптимальным решением будет инвестирование средств в проект а1 - строительство гидроэлектростанции.
7.2. ИНВЕСТИЦИИ В РАЗРАБОТКУ ПОЛЕЗНЫХ ИСКОПАЕМЫХ
Задача 7.2. Разведка недр в регионе показала наличие месторождений серы. Требуется решить, разрабатывать месторождение, т.
е. инвестировать строительство комплекса (а1), или воздержаться (a2). Таким образом, множество решений А= {а1, а2}. Проведенные геологические исследования позволили открыть месторождение, но не дали ответа, строить или не строить комплекс.Состоянием природы в данном случае будет глубина залегания, так как истинное залегание пластов неизвестно. Если глубина небольшая, то экономическая эффективность разработки будет высокой. Если глубина большая, то эффективность может оказаться низкой и добыча серы может не окупиться.
Введем обозначения для состояний природы:
Q1 - месторождение находится на глубине, благоприятной для разработки;
Q2 - месторождение находится как на малой, так и на большой глубине;
Q3 - месторождение находится в основном на большой глубине.
Решение. Проведем экономический расчет эффективности и результаты расчета в рублях представим в табл. 7.2.
Таблица 7.2
Нулевая эффективность относится к случаю отказа от разработки, a1 = –30 означает, что разработка и добыча месторождений серы не оправдают затрат, а, наоборот, приведут к убыткам в 30 тыс. руб.
Полную неопределенность можно уменьшить благодаря дополнительной статистической информации. Тогда задача станет не стратегической, а статистической. Эту информацию можно получить, проведя сейсморазведку и поисковое бурение, что позволит более точно, чем при разведочных работах, определить среднюю глубину Залегания пластов серы, так как станут известны вероятности залегания. Это несколько снизит эффективность, но оправдает дополнительные затраты. По результатам дополнительных исследований получим множество
Х = {х1, х2, x3},
где х1, х2, x3 - малая средняя, умеренная средняя и большая средняя глубина залегания пластов соответственно.
По данным дополнительных исследований были оценены условные вероятности получения отдельных результатов хi Î Х для соответствующих состояний природы QÎW:
От стратегической игры (W, A, W) переходим к задаче в условиях риска (W, D, R).
При этом игроком 1 будет природа, а игроком 2 - статистик. Обозначим D - множество стратегий статистика, т. е. множество функций d, отображающих множество Х во множество А.
Функцией платежей будет функция риска R(Q, d) = M[L(Q, а)], где функция потерь принимает значения L(Q, a) = –W(Q, а) (табл. 7.3).
Таблица 7.3
Составим таблицу множества возможных нерандомизированных функций d (dÎD; 23 = 8) решений при разных хi (табл. 7.4). Рассчитаем по табл. 7.4 значения риска. Воспользуемся данными вероятностей состояний природы и получим на основании функции потерь их математические ожидания, т. е. функции риска:
Таблица 7.4
Продолжая далее расчеты, получим таблицу значении риска.
Матрица (табл. 7.5) имеет седловую точку, равную нулю. Но это решение нельзя отнести к разумной стратегии. С учетом чрезмерной осторожности всегда предполагается принятие решения a2 - не разрабатывать месторождение, не инвестируя - не рискуешь, но и прибыли не получишь.Таблица 7.5
Оптимальной стратегией статистика, представляющего инвестиционную организацию, будет байесовская функция решения, которую можно оценить с использованием функции распределения вероятностей залегания серы на разной глубине, полученной на основе полных, достаточно обширных геологических исследований и равной: P(Q1) = 0,2; P(Q2) = 0,5; P(Q3) = 0,3.
С учетом априорного распределения r(x, d) можно определить оптимальную байесовскую функцию, минимизируя риски.
Для этого вычислим все восемь значений и возьмем минимальное из них:
Из полученных данных заключаем, что
Итак, оптимальной байесовской стратегией статистика в статистической игре (W, D, R), которая моделирует эксплуатацию месторождений, будет функция решения d2, в которой d2(x1) = a1; d2(x2)=a1; d2(x3)=a2.
Вывод. Инвестиции оправдывают затраты и могут дать прибыль 27,3 тыс. руб., если дополнительные исследования дали результат x1 - малая глубина или х2 - средняя глубина залегания серы.
Только в случае, если геологические исследования дадут результаты x3 (в среднем глубокое залегание), нужно принять решение а2: в связи с экономической неэффективностью разработки месторождения воздержаться от его инвестирования.
Глава 8 ЗАДАЧИ ИЗ РАЗНЫХ ОБЛАСТЕЙ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ
8.1. ПРОЕКТИРОВАНИЕ МАРШРУТОВ ГОРОДСКОГО ТРАНСПОРТА
Задача 8.1. Выбор трассы новой автобусной линии в городе. Построен за городом новый жилой микрорайон, который нужно связать с центром города. Имеем исходную стратегическую игру (W,A,L). Статистик пришел к выводу, что линию можно провести до пункта А1, или А2, или А3. Решение А = {а1, а2, а3}, где a1, означает проведение трассы до А1, а2 - до А2, а3 - до А3, причем А1 и А3 находятся в разных концах города. Множеством состояний природы W являются Q1, Q2, Q3 - состояния, когда большинство жителей микрорайона работает соответственно в окрестности пункта А1, пункта А2 и пункта А3, находящегося в самом центре города.
Если принятое решение провести трассу не будет удовлетворять нужды жителей микрорайона, то транспортное предприятие понесет потери. Потери будут максимальными при ошибочном решении проложить трассу к пункту А3 вместо А1 или наоборот.
Решение. Функция L(Q, а) потерь характеризуется матрицей (табл. 8.1).
Таблица 8.1
Преобразуем стратегическую игру (W, A, L) в статистическую (W, D, R) при учете информации о действительном состоянии природы. Для этого проводится выборочный опрос жителей микрорайона. Результаты этого опроса образуют вектор
где x1, х2, х3, - доля от общего числа опрошенных (не менее 50 %), которые предлагают строительство трассы до пунктов А1, А2, A3 соответственно;
x4 — любое из трех направлений не получило решающего количества голосов.
Действительные данные результата опроса показали следующие вероятности рекомендаций жителей (табл. 8.2) в зависимости от состояний природы Q.
Таблица 8.2
В результате опроса получаем условные вероятности P(x1|Q1) = P(x2|Q2) = P(x3|Q3) = 0,7. Пусть d(x) = а - нерандомизированная функция решения, преобразующая множество Х результатов эксперимента в множество решений. Множество D нерандомизированных решений при наличии четырех результатов эксперимента и трех возможных решений будет иметь 34 = 81 различную функцию решений статистика в статистической игре с природой (W, D, R}. Из них мы ограничимся шестью допустимыми функциями: d1, d2, ... , d6 (табл. 8.3).
Таблица 8.3
Какие же решения не вошли в допустимые? Недопустимые функции решения — это все функции dÎD, которые не ставят в соответствие хотя бы одному из результатов x1, x2, x3 решение а1, а2, a3 потому, что для этих функции значение риска R(Q, d) будет всюду большим по сравнению с другими функциями решений. Результат х4 при этом во внимание не принимается, поскольку он не отражает конструктивного предложения.
Учтем полученные условные вероятности и, зная значения функций потерь, вычислим математические ожидания функций потерь, т.
е. получим функции риска для допустимых функций решений:Из табл. 8.3 видно, что вне зависимости от х1, х2 х3, х4 решение d4 будет соответствовать решению а1, d5®a2, d6®a3.
Объединим все полученные решения в табл. 8.4 и выпишем минимальные значения функции риска по строке и максимальные значения - по столбцу.
Таблица 8.4
Таким образом, как показывает табл. 8.4, среди нерандомизированных функций решений нет минимаксной функции: v1=0<v2=1,75. Следовательно, минимаксную функцию решения надо искать во множестве D* рандомизированных функций d.
В данной статистической игре (W, D, R) в качестве оптимальной нужно принять минимаксную функцию решения.
Для того чтобы найти рандомизированную минимаксную функцию решения d0, следует обратиться к линейному программированию (см. приложение).
Пусть d - распределение вероятностей на множестве нерандомизированных функций решения d. Обозначим это распределение h1 = P(d1), h2 = P(d2), ... , h6 = P(d6). Теперь обозначим через u цену расширенной статистической игры (W, D*, R) при рандомизации функций решений и запишем в терминах линейного программирования задачу статистика, который решает ее в интересах транспортного предприятия.
Для этого воспользуемся данными табл. 8.4:
Преобразуем переменные, разделив h на цену игры u> 0, и введем дополнительные переменные q7, q8, q9. В результате перейдем от неравенств к равенствам:
при qj > 0, j = .
Решим эту задачу линейного программирования симплексным методом (техника решения известна и здесь не излагается) и получим базисное оптимальное решение:
q1 = q3 = 2/7; q2 = q4 = q5 = qб = 0.
Значит, Zmax = q1 + q3 = 2/7 +2/7 = 4/7.
Отсюда u = l/Zmax = 2/7 = 1,75.
Перейдем к исходным переменным hi = qi u; i = , где hi - вероятности, с которыми следует сочетать соответствующие нерандомизированные функции решения di (i =
). После перемножения получим рандомизированные функции d:
Итак, получена минимаксная рандомизированная функция решения d0 с распределением вероятностей: P(d1) = 1/2; P(d3) = 1/2. Как ее охарактеризовать? Это смешанная стратегия d0 с одинаковыми вероятностями чистых функций решения d1 и d3. Они различаются только результатом статистического эксперимента.
Вывод. В задаче выбора транспортным предприятием наилучшей трассы маршрута новой автобусной линии получена оптимальная минимаксная функция решения:
• если по эксперименту с анкетами получен результат х1, или x2, или x3, то следует принять решение а1 или а2, или a3 соответственно;
• если получен результат х4, то нужно использовать механизм случайного выбора между решениями а1 (трассу вести до А1) и a3 (трассу вести до А3) с одинаковыми вероятностями, равными 0,5. Следует сделать одно важное замечание: в данном случае мы из расчетов получили одинаковые вероятности. (Это решение не имеет ничего общего с принципом равновероятности, который иногда необоснованно применяется при отсутствии информации о возможных вероятностях событии.)
8.2. ПРИНЯТИЕ РЕШЕНИЙ В СЕЛЬСКОМ ХОЗЯЙСТВЕ
Задача 8.2. Планирование участков земли под картофель, проводимое методом Байеса. При наличии больших массивов земли в хозяйстве можно сознательно выбирать наиболее выгодные для урожая участки с учетом их влажности.
В период вегетации требуется определенное количество влаги. Если влажность будет излишняя, то часть посадочного материала начнет гнить, урожай будет плохим.
Картофель в средней полосе сажают обычно в апреле. В это время трудно предвидеть, каким будет лето - сухим или влажным. Фактически создается ситуация, которую можно считать игрой с природой. Мы должны принять решение, на каких участках сажать картофель: на сухих или на тех, которые сами по себе являются влажными.
Введем условные обозначения:
W = {Q1, Q2} - множество состояний природы;
Q1 - осадки выше нормы;
Q2 – сухое лето (осадки не выше нормы);
А = {а1, a2} - множество решений статистика;
а1 - посадку производить на участках с большой влажностью почвы;
a2 - посадку производить на сухих участках, так как ожидается влажное лето.
Известны средние урожаи в зависимости от принятого решения и состояния природы. При этом наименьшие урожаи бывают, если осадки выше нормы (Q1), и принимается решение а1 -сажать картофель на влажных участках.
Наибольшие урожаи в среднем бывают при решении а2 -сажать картофель на сухих участках и при состояниях природы Q1 - влажное лето.
Прибыль на 1 га в тыс. руб. в среднем известна по многолетним результатам (табл. 8.5).