ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 2 страница
223
* В скобках указаны вероятности соответствующих цен.
Расчет ожидаемых полных затрат (верхнее число в правой колонке, см. табл. 5.9):
10,4 = 13,1 * 0,3 +11,5 * 0,5 + 3,5 * 0,2 .
Получив из табл. 5.8 и 5.9 ожидаемую выручку и ожидаемые затраты, комбинируем рассчитанные данные и получаем ожидаемые чистые поступления по годам в млн дол., т.е. E(NCFt), табл. 5.10.
Таблица 5.10
Год | Ожидаемые поступления | Ожидаемая выручка от продажи оборудования | Ожидаемые полные затраты | Ожидаемые чистые поступления |
Первый | 10,2 | - | 10,4 | -0.2 |
Второй | 10,2 | - | 10,4 | -0.2 |
Третий | 14,2 | - | 11,6 | 2.6 |
Четвертый | 16,3 | - | 13,2 | 3.1 |
Пятый | 16,3 | 3,5 | 13,2 | 6.6 |
Теперь определяем коэффициент дисконтирования, считая проект средним между рискованным и высокорискованным. С учетом данных табл. 5.6 примем премию за риск, равную 7,5 %. В результате получим приведенную стоимость проекта (табл. 5.11).
Таблица 5.11
Всего за 5 лет приведенная стоимость проекта составит:
-0,177 - 0,155 + 1,766 + 1,835 + 3,39 = 6,659 млн дол.
Чистая приведенная стоимость рассматриваемого j-го проекта за это же время равна:
E{NPVj) = 6,659 - 5,3 = 1,359 млн дол. > 0, (5.6)
где 5,3 млн дол. - затраты на приобретение оборудования по первоначальному условию.
Вывод. Проект следует принять. Все представленные расчеты выполнены на уровне математических ожиданий, поэтому действительный результат в отношении чистой приведенной стоимости проекта может отличаться и в ту, и в другую сторону. Тем не менее, несмотря на приближенность расчета, это обоснование проекта, а не принятие решения «по интуиции» или просто волевое решение - без обоснования.
5.4. АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ПРИНЯТИЯ ПРОЕКТА
Кроме описанного наиболее точного, но и наиболее трудоемкого метода принятия инвестиционных решений используются другие методы, определяемые следующими критериями:
• срок окупаемости;
• прибыль на капитал;
• внутренняя норма прибыли.
Рассмотрим суть этих методов.
Срок окупаемости. Это период, в течение которого фирма вернет начальные капитальные вложения. Если срок окупаемости меньше заданного нормативного срока, то проект принимается. В противном случае отвергается.
Пример 5.3. Пусть для рассмотренного в разд. 5.3 инвестиционного проекта установлен нормативный срок окупаемости капитальных вложений 3 года. Начальные капитальные вложения были определены выше и равны 5,3 млн дол.
Из табл. 5.11 очевидным образом получается табл. 5.12.
Поскольку наличные капиталовложения равны 5,3 млн дол., то проект окупится, как видно из табл. 5.12., лишь через 4 года при нормативном сроке 3 года. Поэтому проект должен быть отклонен. Таким образом, использование критерия по сроку окупаемости может привести к отклонению инвестиционного проекта с положительной ожидаемой чистой стоимостью (она у нас была равна 1,359 млн дол.). Нетрудно видеть, что при других нормативных сроках освоения капитальных вложений согласно данному критерию можно также прийти к принятию проекта с отрицательной ожидаемой чистой стоимостью E(NPVj) < 0. Причина в том, что поступления от проекта в разные моменты времени не дисконтируются. Следовательно, по этому критерию слишком большой вес придается ранним поступлениям и слишком малый - более поздним. Поступления после заданного срока окупаемости не имеют ценности вообще, что противоречит здравому смыслу. Да и заданный нормативный срок окупаемости (в данном случае 3 года) субъективный. Если бы в данном примере был установлен срок 4 года, проект был бы принят.
Таблица 5.12
Год | Ожидаемые чистые поступления E(NCFt), млн дол. в год | Накопленные ожидаемые чистые поступления, млн дол. |
Первый | -0,2 | -0,2 |
Второй | -0,2 | -0,4 |
Третий | 2,6 | 2,2 |
Четвертый | 3,1 | 5,3 |
Пятый | 6,6 | 11,9 |
Таким образом, метод простой, но за простотой стоит очень невысокая точность результатов, что, впрочем, логично: без серьезных научных исследований нельзя получить достаточно надежных результатов.
Прибыль на капитал. Средняя прибыль на капитал инвестиционного проекта определяется как среднегодовая прибыль, деленная на сумму инвестиций в проект. Принять или не принять проект, определяется сравнением прибыли проекта с заданной.
Пример 5.4. Пусть требуемая средняя норма прибыли проекта равна 60 %. Суммарные чистые поступления от проекта составляют 11,9 млн дол. в течение 5 лет (см. табл. 5.12), т.е. среднегодовая прибыль равна:
= 2,38 млн дол.
Инвестиции составили 5,3 млн дол., поэтому прибыль проекта будет
* 100% = 44,9%
что меньше заданных 60 %. Таким образом, проект и по этому критерию отклоняется, хотя для него согласно формуле (5.6) положительная ожидаемая чистая стоимость E(NPV) > 0, и при более точной оценке проект должен быть принят.
В отличие от критерия по сроку окупаемости здесь, наоборот, слишком большой вес придается поздним поступлениям: поскольку поступления не дисконтируются, удаленные по времени поступления рассматриваются как текущие, нарушается установленное выше правило, что «сегодняшние деньги дороже завтрашних».
Внутренняя норма прибыли. Суть этого критерия проиллюстрируем на следующем примере.
Пример 5.5. Рассмотрим однопериодный инвестиционный проект:
Инвестиции, дол. ............... 100 000
Чистые поступления в конце года, дол. ....... 108 000
Норма прибыли N при этом равна:
Следовательно, для одного периода критерий, эквивалентный правилу чистой приведенной стоимости проекта, был бы такой: принять проект, если коэффициент дисконтирования (процент на капитал) r меньше 8 %. Другими словами, вместо принятия проекта с инвестициями 100 000 дол. и под прибыль r = 8 % выгоднее просто положить деньги в банк под р % годовых, если р>r.
По этой схеме работают фирмы по продаже автомашин, недвижимости в ряде западных стран. Машину можно купить в кредит под 6 % годовых, а деньги положить в банк под 9 % годовых. Здесь коэффициент дисконтирования r = 6 % < 9 %. Если бы r стал больше 9 %, состоятельные люди покупали бы машины за наличные, а часть других, возможно, не покупала бы вообще. В результате спрос на автомашины снизился бы, что было бы невыгодно производителям автомобилей. На западном рынке так обстоит дело с приобретением многих товаров и услуг, в результате значительная часть общества живет в кредит, хотя это никак не говорит об их бедности.
Глава 6 СТАТИСТИЧЕСКИЕ ИГРЫ
6.1. ОБЩИЕ СВЕДЕНИЯ
Создателем теории статистических игр считается А. Вальд. Он показал, что в теории принятия решений статистические игры являются основным подходом, если решение принимается в условиях частичной неопределенности.
Статистические модели представляют собой игру двух лиц (человека и природы) с использованием человеком дополнительной статистической информации о состояниях природы.
Она существенно отличается от антагонистической игры двух лиц с нулевой суммой, где выигрыш одного равен проигрышу другого.
В статистической игре природа не является разумным игроком, который стремится выбрать для себя оптимальные стратегии. Этот игрок не заинтересован в выигрыше. Другое дело -человек, в данном случае статистик. Он имеет целью выиграть игру с воображаемым противником, т. е. с природой.
Игрок-природа не выбирает оптимальной стратегии, но статистик должен стремиться к определению распределения вероятностей состояния природы. Следовательно, основными отличиями статистической игры от стратегической являются:
• отсутствие стремления к выигрышу у игрока-природы, т. е. отсутствие антагонистического противника;
• возможность второго игрока - статистика провести статистический эксперимент для получения дополнительной информации о стратегиях природы.
Так, например, статистик, работающий в фирме «Одежда», может изучить многолетние данные о погодных условиях в местностях, где одежда будет продаваться, и в зависимости от наиболее вероятного состояния погоды выработать рекомендации, куда и какое количество партий изделий отправлять, где выгоднее и на каком уровне провести сезонное снижение цен и т. д.
Таким образом, теория статистических решений является теорией проведения статистических наблюдений, обработки этих наблюдений и их использования.
В теории статистических решений основные правила могут быть детерминированными и рандомизированными.
В статистических играх используются понятия: риск (функция риска), потери (функция потерь), решение (функция решения), функции распределения при определенных условиях.
Необходимо пояснить понятие рандомизации. Это статистическая процедура, в которой решение принимается случайным образом. Математическая энциклопедия это определяет более подробно: «Статистическая процедура принятия решения, в которой по наблюденной реализации х случайной величины Х решение принимается с помощью розыгрыша по вероятностному закону, называется рандомизацией»*.
* Математическая энциклопедия. Т.4. - М.: Советская энциклопедия, 1984. - С. 865.
Введем условные обозначения:
В или W - множество состояний природы;
В. или Qj - отдельное состояние природы, Qj Î W;
А — множество действий (решений) статистика;
а - отдельное решение статистика, a Î А;
L - функция потерь. Множества W и А предполагаются численно определенными, поэтому представляется возможным установить распределение вероятностей. Если принятое статистиком решение a Î А и состояние природы Q Î W, то функция потерь запишется L(Q; a);
D - совокупность всех нерандомизированных (чистых) функций решения;
d( ) - функция решения;
- случайный вектор. Характеристикой функции решения является функция потерь. Статистик может перед принятием одного из возможных решений провести эксперимент, который заключается в наблюдении случайной переменной х. В итоге представляется возможным получить распределение этой случайной переменной в зависимости от состояния природы Q;
F(x|Q) - функция условного распределения случайной переменной х. Предполагается, что для каждого состояния природы Q известно значение функции F(x|Q);
п - объем выборки;
xQ — множество всех выборок объема п. После получения результата эксперимента х статистик использует некоторую функцию решения и принимает одно из решений а Î А, когда результат эксперимента - вектор :
R — функция риска;
R(Q,d) - функция риска, определенная на прямом произведении W´D множества состояний природы и множества решений.
Игра (W, A, L) - исходная стратегическая игра, соответствующая стратегической задаче принятия решения;
G = (W, D, R) - статистическая игра;
s - рандомизированная функция решения;
D* - множество случайных функций решения, s Î D*. Подразумевается, что D Ì D*, так как чистая функция решения (нерандомизированная) может быть рассмотрена как смешанная, которая используется с вероятностью, равной 1;
G(Q) - функция априорного распределения состояний природы Q;
X - совокупность всех априорных распределений x Î X.
6.2. СВОЙСТВА СТАТИСТИЧЕСКИХ ИГР
Функция решения, отображающая множество выборок XQ в множество решений статистика A, называется нерандомизированной (чистой) функцией решения статистика. Так, по результатам эксперимента статистик определяет, какое решение а Î А он должен выбрать. Для выбора из множества D наилучшей функции решения он использует функцию риска.
Функция риска зависит от множества состояний природы и от множества функций решения и принимает значение, выраженное действительными числами. Она определяет математическое ожидание функции потерь при некотором состоянии природы Q и известной статистику функции распределения F( |Q), когда а=d(
).
Представим функцию риска:
,
где M - знак математического ожидания;
L(Q, a) - функция потерь при состоянии природы Q и d( ) = a.
В теории статистических функций любую неотрицательную функцию L, определенную прямым произведением W´D, называют функцией потерь. Значение L(Q,d) функции потерь L в произвольной точке (Q, d)Î W´D интерпретируют как ущерб, к которому приводит принятие решений d, dÎD, если истинное значение параметра есть Q, Q Î W.
Выражение W´D - прямое произведение множества состояний природы и множества функций решения. Функция R(Q, d) не является случайной величиной, а принимается как платеж статистика в его игре с природой при следующих условиях:
• состояние природы фиксировано;
• функция решений выбрана, d Î D.
Стратегическая игра (W, A, L) становится статистической, G = (W, D, R), если используется результат эксперимента - вектор . Игра называется статистической, если в ней:
• XQ - множество n-мерных выборок;
• D - множество функций решений, которые преобразуют XQ в А;
• W - множество состояний природы;
• R(Q, d) - функция риска.
Статистическая игра записывается как G = (W, D, R). Данная игра является игрой двух лиц с нулевой суммой, где dÎD -функция решения статистика, а риск R(Q, d) статистика - платеж природе.
Статистик может не прибегать к рандомизации, если он использует как оптимальную байесовскую функцию решения r (см. разд. 6.2.1).
Рандомизация на стороне статистика проводится двумя методами:
1) применение решений аÎА с определенными вероятностями (смешение решений);
2) смешение чистых функций решения dÎD, т.е. рандомизация функций решения.
Чаще применяется второй метод.
Распределение вероятностей d на множестве D чистых функций решения d называется рандомизированной (смешанной) функцией решения статистика.
Функция риска становится случайной величиной, если экспериментатор применяет в статистической игре случайную функцию решения dÎD*, т. е. когда каждой чистой функции решения dÎD приписывается вероятность, с которой она должна использоваться.
Платежом будет математическое ожидание функции потерь, взятое для некоторого состояния природы Q при распределении d, определенном на множестве чистых функций решения D:
Если статистик использует случайные функции решения dÎD*, то этим расширяется (обобщается) статистическая игра.
Расширенная статистическая игра (W, D*, R) называется также смешанным расширением статистической игры с рандомизацией на стороне статистика.
Дальнейшее расширение статистической игры может быть достигнуто при предположении, что природа также «применяет» стратегию при «выборе» своего состояния Q.
Априорное распределение вероятностей x на множестве W состояний природы означает распределение до проведения эксперимента. Это априорное распределение xÎX состояний природы является случайной (смешанной) стратегией природы в статистической игре, где природа не рассматривается как разумный игрок.
Если Q предполагается случайной величиной с априорным распределением x, то риск R(Q,d) становится случайной переменной при фиксированной функции решения d. В данном случае математическое ожидание риска R(Q,d) при априорном распределении x, задаваемом функцией распределения G(Q), определяется как
,
где r(x,d) -байесовский риск функции решения d с учетом априорного распределения x.
Если в качестве оптимальной принимается байесовская функция решения, то используется формула r(x,d).
Вводя рандомизацию на стороне природы, приходим к дальнейшему расширению статистической игры.
Игра (X, D*, r) со смешанным расширением статистической игры с рандомизацией на стороне статистика и на стороне природы называется полностью расширенной статистической игрой.
Поясним в полностью расширенной статистической игре (X, D*, r) ее составляющие:
X - множество всех априорных распределений x состояний природы или множество ее смешанных стратегий;
D* - множество всех случайных функций решения;
r = r(x,d) - байесовский риск.
Представим схему расширения статистической игры (рис. 6.1). При наличии данных без учета стохастических распределений имеем исходную стратегическую игру двух лиц с нулевой суммой, которая относится к антагонистическим играм. Данная игра является исходной для соответствующей статистической задачи принятия решения.
Рис. 6.1. Расширение статистической игры
Если статистик (экспериментатор) не имеет возможности провести эксперимент со случайной величиной X, чтобы получить ее распределение, которое зависит от состояния природы, он вынужден будет использовать только стратегическую игру (W, A, L).
Однако очень часто статистик может провести эксперимент и получить в результате вектор , которым он в состоянии воспользоваться при принятии решения аÎА функции d(
). В этом случае платеж L(Q, а) становится случайной величиной, а игра - статистической G(W, D, R). Стратегией статистика будет dÎD, а платежом природе от статистика станет его риск R(Q, d).
Далее у статистика остаются две альтернативы:
1) воспользоваться рандомизацией состояний природы и перейти к расширенной (X, D, r) статистической игре;
2) воспользоваться рандомизацией функций решения и перейти к расширенной статистической игре (W, D*, R).
Наконец, если статистик применит смешанные стратегии для обоих игроков, то получит полностью расширенную статистическую игру ((W, D*, r).
На практике статистик для выбора оптимальной стратегии может не производить рандомизацию, а в качестве оптимальной взять байесовскую функцию решения.
А. Вальд, создавая теорию статистических игр, опирался на созданную Д. Нейманом теорию стратегических игр, поэтому сравним далее понятия стратегических игр двух лиц с нулевой суммой и понятия статистических игр статистика с природой. Для этого укажем основные обозначения в стратегической и статистической играх:
Х - совокупности стратегий игрока 1;
Y - совокупности стратегий игрока 2;
W— платежная функция;
W(X,Y) - платеж игрока 2 игроку 1;
G == (X,Y,W) - игра игрока 1 с игроком 2;
Г = (X, Н, К) ~ смешанное расширение игры G = (X, Y,W), где X - множество всех смешанных стратегий x игрока 1;
Н - множество всех смешанных стратегий h игрока 2;
К - риск игрока 2.
Составим сравнительную таблицу задач статистических решений с игрой двух лиц с нулевой суммой (табл. 6.1).
Таблица 6.1
6.2.1. ВЫБОР ФУНКЦИЙ РЕШЕНИЯ
Для всех состояний природы не существует одной наилучшей функции решения. От статистика требуется применение таких методов, которые дают оптимальные функции решения в более узком диапазоне.
Для этого необходимо использовать критерии оптимальности.
Статистик в статистической игре (W, D, R) или в расширенных статистических играх стремится к выигрышу, т. е. к определению наилучшей функции решения, при которой риск R(Q, d) был бы минимальным. Но это не просто, так как для каждого состояния природы Q имеется своя лучшая функция.
Пусть у нас имеются две различные функции решения d1 и (рис. 6.2).
Рис. 6.2. Сравнение двух функций решения
Можно выделить область, где функция d1 будет лучшей, - в диапазоне состояний природы Q1< Q<Q2. Вторая функция d2 будет лучшей для состояния природы при Q<Q1 и при Q>Q2.
Функция d Î D называется допустимой, если в множестве D* нет никакой другой функции решения d0, которая была бы лучшей d для всех QÎW. Данная функция для каждого QÎW должна удовлетворять неравенству R(Q,d0) £ R(Q,d). Таким образом, допустимая функция решения не будет доминирующей стратегией статистика в статистической игре.
Рассмотрение только допустимых функций существенно уменьшит множество D* до множества допустимых функций решения.
Отметим, что байесовские функции решения входят в класс допустимых функций.
Определение. Функция решения d0ÎD* называется байесовской относительно априорного распределения xÎX состояний природы Q, если она минимизирует байесовский риск r(x, d) на множестве D*.
Таким образом, r(x, d) = r(x, d). Приведем формулу Байеса. Прежде чем ее написать, обратимся к теореме о полной вероятности [2, разд. 2.5, 2.6].
Теорема. Если событие А может наступить только при условии появления одного из событий В1, В2, ...,Bn, образующих полную группу несовместных событий, то вероятность события А равна сумме произведений вероятностей каждого из событий В1, В2, ...,Bn на соответствующую условную вероятность события А:
где P(Bi) - вероятность события Bi;
Р(А|Вi) - условная вероятность события А в случае, если событие Вi уже произошло.
Формула Байеса используется тогда, когда событие А появляется совместно с каким-либо из полной группы несовместных событий В1, В2, ..., Bn . Событие А произошло, и требуется произвести количественную переоценку вероятностей событий В1, В2, ..., Bn. При этом известны вероятности Р(В1), Р(В2),..., Р(Bn) до опыта (априорные). Требуется определить вероятности после опыта (апостериорные).
Апостериорные вероятности представляют собой условные вероятности Р(В1|А), Р(В2|А) ,..., Р(Вn|А). Вероятность совместного наступления событий А с любым из этих событий Вj по теореме умножения равна:
Эту формулу можно переписать исходя из формулы полной вероятности:
Задача 6.1. Собирается партия исправных изделий с трех предприятий. Первый завод поставляет 60 %, второй - 30 %, третий - 10 % изделий. В1, В2, В3 - события, соответствующие тому, что изделия изготовлены на первом, втором и третьем предприятиях.
Вероятность исправной работы изделий первого предприятия равна 0,98, второго - 0,99, третьего - 0,96.
Определить вероятность того, что в собранную партию исправных изделий попали соответственно изделия с первого, второго и третьего предприятий.
Введем обозначения:
А - событие, заключающееся в том, что изделие исправно;
Р(А) - полная вероятность того, что изделие исправно;
Р(В1|А), Р(В2|А), Р(В3|А) - условные вероятности того, что исправное изделие изготовлено соответственно на первом, втором и третьем предприятиях;
Р(A|В1), Р(A|В2), Р(A|В3) - условные вероятности того, что изделие, изготовленное соответственно на первом, втором и третьем предприятиях, исправно;
Р(В1), Р(В2), Р(В3) - вероятности того, что изделие изготовлено соответственно на первом, втором и третьем предприятиях.
Известно: Р(А|В1) = 0,98; Р(А|В2) = 0,99; Р(А|В3) = 0,96; Р(В1) = 0,60; Р(В2) = 0,30; Р(В3) = 0,10.
Требуется определить Р(А); Р(В1|А); Р(В2|А); Р(В3|А).
Решение. 1. Определим полную вероятность того, что изделия, прибывшие с разных предприятии, исправны:
2. Вычислим условные вероятности того, что в партию исправных попали изделия с первого, второго и третьего предприятии соответственно:
3. Проверим: Р(В1|А) + Р(В2|А) + Р(В3|А) = 0,599 + 0,303 + + 0,098 = 1.
Вывод. По формуле Байеса количественная переоценка доли предприятии в партии исправных изделии составляет: первое предприятие имеет 59,9 %; второе - 30,3 %; третье - 9,8 %.
Остановимся на некоторых нестандартных принципах принятия решений.
Принцип Байеса - Лапласа. Данный принцип отступает СП-условий полной неопределенности. В нем предполагается, что возможные состояния природы могут достигаться с вероятностями Р1, P2,..., Рn при условии, что Р1+ P2+ ,...,+ Рn =1. Байес в 1763 г. предложил считать равными вероятности отдельных состояний природы.
В 1812 г. Лаплас обобщил этот принцип на случай различных вероятностей, но тем не менее говорят и о байесовском подходе. Если напомнить, что байесовские функции решения входят в класс допустимых функций, то будет понятно их широкое использование в практике принятия решений (см. гл. 3).