ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 5 страница
201
Исследуем реалистичность критерия выбора решения, основанного на расчете ОДО. Рассмотрим две альтернативы:
1) выигрыш 1 000 000 дол. с вероятностью 1;
2) игра (лотерея): выигрыш 2 100 000 дол. с вероятностью 0,5 и проигрыш 50 000 дол. с вероятностью 0,5. В этом случае
ОДО= 0,5* 2 100 000 - 0,5* 50 000 = 1 025 000 дол.
Относительно получаемого среднего выигрыша указанные альтернативы практически эквивалентны, и если игрок безразличен к риску, он выберет вторую альтернативу. Если он к риску не безразличен, а подавляющее число людей именно таковыми являются, то выбор будет зависеть главным образом от финансового состояния игрока. Игроки, имеющие скромный денежный доход, предпочтут не рисковать и выберут гарантированный выигрыш. Для ЛПР, обладающего достаточно крупным капиталом, проигрыш в 50 000 дол. невелик, и он предпочтет рискнуть. Рисковать будут также игроки, патологически склонные к финансовым авантюрам.
В данной главе будут изложены основы математической теории принятия субъективных решений [13]. Методология рационального принятия решений в условиях неопределенности, основанная на функции полезности индивида, опирается на пять аксиом, которые отражают минимальный набор необходимых условий непротиворечивого и рационального поведения игрока. Для компактного изложения аксиом нам потребуется следующее определение.
Определение 4.1. Предположим, что конструируется игра, в которой индивид с вероятностью а получает денежную сумму х и с вероятностью (1 – a) - сумму z. Эту ситуацию будем обозначать G(x, z: a).
Аксиома 1. Аксиома сравнимости (полноты). Для всего множества S неопределенных альтернатив (возможных исходов) индивид может сказать, что либо исход х предпочтительнее исхода у (х у), либо у
х, либо индивид безразличен в отношении к выбору между х и у (х
у). Запись х
у означает, что исход х предпочтительнее исхода у либо индивид безразличен в отношении к выбору между х и у.
Аксиома 2. Аксиома транзитивности (состоятельности). Если х у и у
z, то х
z. Если х
у и у
z, то х
z.
Аксиома 3. Аксиома сильной независимости. Предположим, что мы конструируем игру, в которой индивид с вероятностью а получает денежную сумму х и с вероятностью (1 - α) — сумму z, т.е. G(x, z: α). Сильная независимость означает, что если индивид безразличен в отношении к выбору между х и у (х у), то он также будет безразличен в отношении к выбору между игрой (лотереей) G(x, z: α) и игрой G(y, z: α), т.е. из х
у следует G(x, z: α)
G(y, z: α).
Аксиома 4. Аксиома измеримости. Если х у
z или х
у
z, то существует единственная вероятность α, такая, что у
G(x, z: α).
Поясним смысл этой аксиомы. Пусть, например, имеем три исхода: х = 1000; у = 0; z означает смерть игрока. Исходя из здравого смысла смерть нельзя сравнивать ни с каким выигрышем, и соответствующего этому исходу значения вероятности α существовать не может.
Однако в жизни бывают ситуации, когда некий проигрыш равнозначен смерти. Тогда утверждение у

Аксиома 5. Аксиома ранжирования. Если альтернативы у и и находятся по предпочтительности между альтернативами х и z и можно построить игры, такие, что индивид безразличен в отношении к выбору между у и G(x, z: α2), a также к выбору между и и G(x, z: α2), то при у
и.
Поясним смысл этой аксиомы. Пусть существуют следующие альтернативы: х = 1000; у = 500; и = 200; z = –10. Пусть эквивалентны две пары ситуаций, одна из которых неигровая, а другая игровая:
1) гарантированно получить 500 или игра: с вероятностью α1, выиграть 1000 и с вероятностью (1 – α1) проиграть 10, т.е.
500 G(1000, -10: α1);
2) гарантированно получить 200 или игра: с вероятностью α2 выиграть 1000 и с вероятностью (l - α2) проиграть 10, т.е.
200 G(1000, -10: α2).
Очевидно, что при указанных условиях α1 α2. Если α1 + α2, то у
и.
Утверждение аксиомы вполне соответствует здравому смыслу: чем больше вероятность крупного выигрыша, тем больше игра «стоит», т.е. тем большая плата потребуется за приобретение права участвовать в этой игре.
Если принять приведенные аксиомы и предположить, что люди предпочитают большее количество некоторого блага меньшему, то все это в совокупности определяет рациональное поведение ЛПР.
При названных предположениях американскими учеными Дж. Нейманом и О. Моргенштерном было показано, что ЛПР при принятии решения будет стремиться к максимизации ожидаемой полезности. Другими словами, из всех возможных решении он выберет то, которое обеспечивает наибольшую ожидаемую полезность. Сформулируем определение полезности по Нейману-Моргенштерну.
Определение 4.2. Полезность - это некоторое число, приписываемое лицом, принимающим решение, каждому возможному исходу. Функция полезности Неймана - Моргенштерна для ЛПР показывает полезность, которую он приписывает каждому возможному исходу. У каждого ЛПР своя функция полезности, которая показывает его предпочтение к тем или иным исходам в зависимости от его отношения к риску.
Определение 4.3. Ожидаемая полезность события равна сумме произведений вероятностей исходов на значения полезностей этих исходов.
Проиллюстрируем практическую реализацию введенных понятий на примере расчета ОДО и сопоставления этого значения с полезностью.
Задача 4.1. Нефтеперерабатывающая фирма решает вопрос о бурении скважины. Известно, что если фирма будет бурить, то с вероятностью 0,6 нефти найдено не будет; с вероятностью 0,1 запасы месторождения составят 50 000 т; с вероятностью 0,15 -100 000 т; с вероятностью 0,1 - 500 000 т; с вероятностью 0,05 -1 000 000 т. Если нефть не будет найдена, то фирма потеряет 50 000 дол.; если мощность месторождения составит 50 000 т, то потери снизятся до 20 000 дол.; мощность месторождения в 100 000 т принесет прибыль 30 000 дол.; 500 000 т- 430 000 дол.; 1 000 000 т - 930 000 дол. Дерево решений данной задачи представлено на рис. 4.1. Нетрудно рассчитать ожидаемое значение выигрыша:
ОДО = 0,6(-50 000) + 0,1 (-20 000) + 0,15*30 000 + + 0,1*430 000 + 0,05*930 000 = 62 000 дол.
Рис. 4.1. Дерево решений для задачи 4.1 (прибыль указана в долларах)
Если ЛПР, представляющий фирму, безразличен к риску и принимает решение о проведении буровых работ на основании рассчитанного ОДО, то он воспринимает ожидаемую полезность как пропорциональную ОДО, полагая U = 62. Учитывая, что U - индивидуальное число, характеризующее ЛПР, нули, отвечающие расчету ОДО, можно отбросить. В этом случае функция полезности U(v), где v - прибыль, получаемая при различных исходах, является прямой с положительным наклоном. Ниже будет показано, что U можно задавать с точностью до некоторого монотонного преобразования.
Для принятия решения в случае небезразличия ЛПР к риску необходимо уметь оценивать значения полезности каждого из допустимых исходов. Дж. Нейман и О.
Моргенштерн предложили процедуру построения индивидуальной функции полезности, которая (процедура) заключается в следующем: ЛПР отвечает на ряд вопросов, обнаруживая при этом свои индивидуальные предпочтения, учитывающие его отношение к риску. Значения полезностей могут быть найдены за два шага.Шаг 1. Присваиваются произвольные значения полезностей выигрышам для худшего и лучшего исходов, причем первой величине (худший исход) ставится в соответствие меньшее число. Например, для приведенной выше задачи U(-50 000 дол.) = 0, а U(930 000 дол.) = 50. Тогда полезности промежуточных выигрышей будут находиться в интервале от 0 до 50. Полезность исхода даже для одного индивида определяется не однозначно, а с точностью до монотонного преобразования. Пусть, например, имеем x1, х2,..., хn - полезности, приписываемые п ожидаемым значениям выигрышей. Тогда α+βx1, α+βх2,..., α+βхn (где (β > 0) также будут полезностями. Если в задаче 4.1 при расчете полезности отбросить последние нули, это будет эквивалентно линейному преобразованию функции полезности при α = 0 и β = 0,001.
Шaг 2. Игроку предлагается на выбор: получить некоторую гарантированную денежную сумму , находящуюся между лучшим и худшим значениями S и s, либо принять участие в игре, т.е. получить с вероятностью р наибольшую денежную сумму S и с вероятностью (1 - р) - наименьшую сумму s. При этом вероятность следует изменять (понижать или повышать) до тех пор, пока ЛПР станет безразличным в отношении к выбору между получением гарантированной суммы и игрой. Пусть указанное значение вероятности равно р0. Тогда полезность гарантированной суммы определяется как среднее значение (математическое ожидание) полезностей наименьшей и наибольшей сумм, т.е.
U( ) = p0 U(S) + (1 – p0)U(s). (4.1)
Рассчитаем полезность результатов любого из возможных исходов для задачи 4.1. Пусть для ЛПР безразлично: потерять 20 000 дол. или принять участие в игре (выигрыш 930 000 дол. с вероятностью 0,1 или проигрыш 50 000 дол. с вероятностью 0,9). Согласно формуле (4.1) имеем:
U(-20) = 0,1 U(930) + 0,9 U(-50) = 5,
при этом по определению принято, что U(-50) = 0, U(930) = 50, откуда следует, что U(-20) = 5.
Таким образом, если определена шкала измерения, то может быть построена функция полезности ЛПР (рис. 4.2).
Рис. 4.2. График полезности для задачи 4.
Рис. 4.3. Типы функции полезности Неймана — Моргенштерна для ЛПР, не склонного к риску (а), безразличного к риску (б), склонного к риску (в)
В общем случае график функции полезности может быть трех типов (рис. 4.3):
• для ЛПР, не склонного к риску, — строго вогнутая функция, у которой каждая дуга кривой лежит выше своей хорды (рис. 4.3 а);
• для ЛПР, безразличного к риску, — прямая линия (рис. 4.3 б),
• для ЛПР, склонного к риску, — строго выпуклая функция, у которой каждая дуга кривой лежит ниже своей хорды (рис. 4.3 в).
4.2.
ИЗМЕРЕНИЕ ОТНОШЕНИЯ К РИСКУИсследуем график функции полезности, представленной на рис. 4.4. Для такого типа ЛПР полезность среднего выигрыша (полезность ОДО) больше ожидаемой полезности игры: с вероятностью p выиграть М1 и с вероятностью (1 - р) выиграть М2.
Рис. 4.4. График функции полезности ЛПР, не склонного к риску
Формально мы имеем график вогнутой функции, о которой известно, что ордината любой точки кривой больше ординаты точки хорды кривой. Определим соотношение, характеризующее ЛПР, не склонного к риску. Нетрудно видеть, что
U(M1) - значение полезности в точке А;
U(M2) - значение полезности в точке В;
U(pM1 + (1 - р)М2) - значение полезности в точке С.
Уравнение хорды АВ имеет вид:
U1 = а + bМ ,
где U1 - совокупность точек, лежащих на отрезке прямой.
Найдем значения параметров а и b уравнения прямой.
В точке А имеем U(M1) = а + bМ1.
В точке В имеем U(M2) = а + bМ2.
Вычитаем из первого выражения второе, исключая величину a:
U(M1) – U(M2) = b(M1 – М2) ,
откуда получаем:
После подстановки значений для параметров а и b уравнение хорды АВ имеет вид:
где М1 £ М £ M2.
Пусть М = рМ1 + (1 – р)М2, где 0 £ р £ 1, тогда в точке С справедливо неравенство
Подставив в это неравенство вычисленные значения а и b, получим:
или
U(pM1 + (1 - р)М2) > PU(M1) + (1 - p)U(M2). (4.2)
Неравенство (4.2) характерно для функции полезности ЛПР, не склонных к риску. Оно действительно показывает, что полезность среднего выигрыша (полезность ОДО) больше ожидаемой полезности игры: с вероятностью р выиграть М1 и с вероятностью (1 – р) выиграть М2.
Аналогично можно показать, что для функций полезности ЛПР, склонных к риску, справедливо неравенство
U(pM1 + (1 – р)М2) < pU(M1) + (1 – p)U(M2). (4.3)
Для функций полезности ЛПР, безразличных (нейтральных) к риску, имеет место равенство
U(pM1 + (1 – р)М2) = pU(M1) + (1 – p)U(M2). (4.4)
Склонность или несклонность ЛПР к риску, как уже отмечалось, зависит от его финансового положения, текущей ситуации принятия решения и других факторов. Иначе говоря, эта характеристика ЛПР не является абсолютной, присущей ему при любых обстоятельствах.
Приведем пример игры, по отношению к которой любой игрок не склонен к риску.
Петербургский парадокс (игра придумана петербургскими гусарами). Играют двое. Один бросает монету до тех пор, пока не выпадет «орел». Выигрыш равен (2)n руб., где п - число бросков до появления «орла». Ожидаемая величина выигрыша:
ОДО = 2(1/2) + (2)2 (1/4) + (2)3(1/8) + ... = 1+1+1+ ... .
Вряд ли какой-либо игрок согласится заплатить за право участвовать в этой игре сумму, равную ОДО: эта сумма бесконечно велика.
Предположим теперь, что имеет место игра (лотерея) с альтернативами a и в, т.е. G(a,в: a). Исследуем проблему, как целесообразнее поступить ЛПР: играть или получить гарантированный выигрыш, равный ожидаемому выигрышу. Пусть функция полезности игрока определена как U(W) = ln(W), где W- величина благосостояния. Пусть игра заключается в выигрыше 5 дол. с вероятностью 0,8 и в выигрыше 30 дол. с вероятностью 0,2. Ожидаемая величина выигрыша (ОДО):
E(W) = 5*0,8 + 30*0,2 = 10 дол.
Для указанной логарифмической функции полезности имеем зависимость, выраженную в табл. 4.1.
Таблица 4.1
W | |||||
U(W) | 1,61 | 2,30 | 3,00 | 3,40 |
Рассчитаем полезность ОДО для данной игры:
U(E(W)) = U(10) = ln(10) = 2,3,
т.е. полезность отказа от игры при получении гарантированного выигрыша, равного 10 дол. (ОДО данной игры), оценивается в 2,3 ютиля (ютиль - условная единица полезности). Если ЛПР предпочтет игру, то
E(U(W)) = 0,8U(5) + 0,2U(30) = 0,8*1,61 + 0,2*3,40 = 1,97 ютиля.
Для рассмотренной логарифмической функции полезности большей полезностью обладает вариант с получением гарантированного выигрыша, равного E(W)=ОДО, а не участие в игре (2,3 > 1,97). Такое лицо, принимающее решение, не склонно к риску.
Выводы. Из соотношении (4.2) – (4.4) вытекает:
• если U(E(W)) > E(U(W)),игрок не склонен к риску;
• если U(E(W)) = E(U(W)), игрок нейтрален (безразличен) к риску;
• если U(E(W)) < E(U(W}), игрок склонен к риску.
Здесь Е и U - соответственно символы математического ожидания и функции полезности.
4.3. СТРАХОВАНИЕ ОТ РИСКА
Пусть по-прежнему полезность выражается логарифмической зависимостью U(W) = ln(W) (см. табл. 4.1).
Определим, какую максимальную сумму пожелает заплатить ЛПР, чтобы избежать игры, в которой с вероятностью 0,8 он выигрывает 5 дол. (уменьшение выигрыша на 5 дол. по сравнению с ОДО = 10 дол.) и с вероятностью 0,2 выигрывает 30 дол. (увеличение выигрыша на 20 дол. по сравнению с ОДО). Значение ожидаемой полезности игры составляет 1,97 ютиля, что соответствует гарантированному выигрышу 7,17 дол. (ln7,17 = 1,97). С другой стороны, сумма ожидаемого выигрыша в случае игры (ОДО) равна 10 дол. Поэтому, чтобы избежать игры, ЛПР согласится заплатить максимальную сумму, равную
10 – 7,17 = 2,83 дол.
Из этого следует, что, если ЛПР предлагают застраховаться от игры и просят за это сумму, меньшую, чем 2,83 дол., ему выгодно принять предложение. В данном случае величина, равная 2,83 дол., - премия (максимальная плата) за риск.
Рассмотрим некоторые приложения теории полезности.
Задача 4.2. Оптимальная величина страхования. Ювелир владеет бриллиантом стоимостью 100 000 дол. и желает застраховать его от кражи. Страховка покупается по правилу: цена страховки составляет 20 % от суммы, которую страхуют. Например, если бриллиант страхуется на всю стоимость (100 000 дол.), страховка стоит 20 000 дол., если страхуется на половину цены (50 000 дол.). то страховка обходится в 10 000 дол. Если ювелир будет знать (построит) свою функцию полезности, он сможет рассчитать, на какую оптимальную сумму следует застраховать дорогую вещь.
Ювелир может оказаться в одной из двух ситуации: 1) бриллиант украден; 2) бриллиант не украден. Чем больше сумма страхования, тем больше его состояние (капитал), если бриллиант украден, но тем меньше его состояние, если бриллиант не украден.
Например, если бриллиант застрахован на 50 000 дол., имеют место два случая:
1. Бриллиант украден. При этом потери ювелира рассчитываются следующим образом:
-100 000 (бриллиант) - 10 000 (страховка) + 50 000 (компенсация) = -60 000 дол., а капитал 50 000-10 000 = 40 000 дол.
2. Бриллиант не украден. В этом случае капитал ювелира составит:
100 000 (бриллиант) - 10 000 (страховка) = 90 000 дол.
Если бриллиант застрахован на 100 000 дол., то в случае кражи бриллианта капитал составит 100 000 - 20 000 = 80 000 дол. Если бриллиант не украден, капитал также составит 80 000 дол. Обозначим капитал ювелира в случае, если бриллиант не украден, через Yn:
Yn = 100 000 - 0,2К, (4.5)
где К - сумма страхования.
Если бриллиант украден, то капитал ювелира определим как Yt:
Yt = 0,8 K .
Соответствующий график, отражающий бюджетное ограничение, представлен на рис. 4.5.
Рис. 4.5. Графическое решение задачи 4.2
Предположим, что можно экспертно определить вероятность р того, что бриллиант будет украден. Тогда полезность капитала Yt, равна U(Yt). Вероятность того, что бриллиант не украден, составляет (1-р), и U(Yn) - полезность капитала Yn в этом случае.
Ожидаемая полезность U «игры» (с вероятностью р бриллиант украден и с вероятностью (1 - р) - не украден) определяется согласно формуле (4.1) выражением
U = pU(Yt)+(1-p)U(Yn).
Значения Yt и Yn следует выбирать таким образом, чтобы ожидаемая полезность была максимальной, т.е.
pU(Yt) + (1-р)(Yn) max .
Пусть точка касания кривой безразличия (линия одинаковой полезности) на рис. 4.5 соответствует Yn = 86 000 дол., Yt = 56 000 дол.
Тогда согласно формуле (4.5) имеем: 86 000 = 100 000 - 0,2К, откуда оптимальная величина страхования К = 70 000 дол.
Задача 4.3. Спрос на страхование. Пусть финансовое состояние индивида оценивается заданным значением W. Предполагается, что можно вычислить вероятность р потери некоторой части этого состояния, определяемой суммой L £ W (например, в результате пожара). Индивид может купить страховой полис, в соответствии с которым ему возместят нанесенный ущерб в размере q. Плата за страхование составляет pq, где p - доля страхования в объеме нанесенного ущерба. Проблема состоит в определении значения q.
Исследуем задачу максимизации ожидаемой полезности финансового состояния индивида в ситуации, когда с вероятностью р страховой случай происходит и с вероятностью (1 –р) - не происходит. Тогда задача сводится к поиску максимума по q ожидаемой полезности капитала индивида:
Применим необходимое условие оптимальности - продифференцируем выражение в квадратных скобках по q и приравняем производную нулю:
где q* - оптимальное значение q. В результате получаем:
Предполагая известным вид функции U, из соотношения (4.6) находим значение q*.
Рассчитаем ожидаемую прибыль страховой компании, учитывая, что страховой случай имеет вероятностный характер.
Если страховой случай произошел, компания получает доход pq – q. Если страховой случай не наступил, компания получает доход pq. Поэтому ожидаемая прибыль компании
р(pq - q)+ (1 - р) pq = ppq - pq + pq - ppq = q(p - р),
где р - вероятность наступления страхового случая.
Конкуренция между страховыми компаниями уменьшает прибыль, которая в условиях совершенной конкуренции стремится к нулю, т.е. из условия q(p - р) = 0 следует, что p р.
Это означает, что доля платежа от страхуемой суммы p приближается к вероятности несчастного случая р. Если соотношение p = р ввести в условие максимума ожидаемой полезности, то получим:
.
Если потребитель не склонен к риску, то , и из равенства первых производных следует равенство аргументов, т.е.
W – L + (1 - p)q* =W – pq*,
или
– L + q* – pq* = –pq*,
откуда
q* = L.
Вывод. Страховаться целесообразно на сумму, которую можно потерять в результате несчастного случая.