Всего на сайте:
282 тыс. 988 статей

Главная | Статистика

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 4 страница  Просмотрен 1633

3.4.2. АНАЛИЗ И РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ ДЕРЕВА РЕШЕНИЙ

Процесс принятия решений с помощью дерева решений в общем случае предполагает выполнение следующих пяти этапов.

Этап 1. Формулирование задачи. Прежде всего необходимо отбросить не относящиеся к проблеме факторы, а среди множе­ства оставшихся выделить существенные и несущественные. Это позволит привести описание задачи принятия решения к подда­ющейся анализу форме. Должны быть выполнены следующие основные процедуры: определение возможностей сбора информаций для экспериментирования и реальных действии; состав­ление перечня событии, которые с определенной вероятностью могут произойти; установление временного порядка расположе­ния событий, в исходах которых содержится полезная и доступ­ная информация, и тех последовательных действий, которые можно предпринять.

Этап 2. Построение дерева решений.

Этап 3. Оценка вероятностей состояний среды, т.е. сопо­ставление шансов возникновения каждого конкретного события. Следует отметить, что указанные вероятности определяются либо на основании имеющейся статистики, либо экспертным путем.

Этап 4. Установление выигрышей (или проигрышей, как выигрышей со знаком минус) для каждой возможной комбина­ции альтернатив (действий) и состояний среды.

Этап 5. Решение задачи.

Прежде чем продемонстрировать процедуру применения де­рева решений, введем ряд определений. В зависимости от отно­шения к риску решение задачи может выполняться с позиций так называемых «объективистов» и «субъективистов». Поясним эти понятия на следующем примере. Пусть предлагается лотерея: за 10 дол. (стоимость лотерейного билета) игрок с равной вероятно­стью р = 0,5 может ничего не выиграть или выиграть 100 дол. Один индивид пожалеет и 10 дол. за право участия в такой лоте­рее, т.е. просто не купит лотерейный билет, другой готов запла­тить за лотерейный билет 50 дол., а третий заплатит даже 60 дол. за возможность получить 100 дол. (например, когда ситуация скла­дывается так, что, только имея 100 дол., игрок может достичь своей цели, поэтому возможная потеря последних денежных средств, а у него их ровно 60 дол., не меняет для него ситуации).

Безусловным денежным эквивалентом (БДЭ) игры называет­ся максимальная сумма денег, которую ЛПР готов заплатить за участие в игре (лотерее), или, что то же, та минимальная сумма денег, за которую он готов отказаться от игры. Каждый индивид имеет свой БДЭ.

Индивида, для которого БДЭ совпадает с ожидаемой денеж­ной оценкой (ОДО) игры, т.е. со средним выигрышем в игре (лотерее), условно называют объективистом, индивида, для ко­торого БДЭ ^ ОДО, - субъективистом. Ожидаемая денежная оцен­ка рассчитывается как сумма произведений размеров выигрышей на вероятности этих выигрышей. Например, для нашей лотереи ОДО = 0,5*0 + 0,5*100 = 50 дол. Если субъективист склонен к риску, то его БДЭ > ОДО. Если не склонен, то БДЭ < ОДО. Воп­рос об отношении к риску более строго рассматривается в гл. 4i

Предположим, что решения принимаются с позиции объек­тивиста.

Рассмотрим процедуру принятия решения на примере следу­ющей задачи.

Задача 3.4. Руководство некоторой компании решает, созда­вать ли для выпуска новой продукции крупное производство, малое предприятие или продать патент другой фирме. Размер выигрыша, который компания может получить, зависит от благо­приятного или неблагоприятного состояния рынка (табл. 3.1).

На основе данной таблицы выигрышей (потерь) можно пост­роить дерево решений (рис. 3.1).

Рис. 3.1. Дерево решений без дополнительного обследования конъюнктуры рынка: ÿ - решение (решение принимает игрок): [*] - случай (решение "принимает" случай); // - отвергнутое решение

Таблица 3.1

Номер стратегии Действия компании Выигрыш, дол., при состоянии экономической среды*  
благоприятном неблаго­приятном   
Строительство круп­ного предприятия (а1) 200 000 -180 000
Строительство малого предприятия (a2) 100 000 -20 000
Продажа патента (a3) 10 000 -10 000

 

• Вероятность благоприятного и неблагоприятного состояний экономичес­кой среды равна 0,5.

 

Процедура принятия решения заключается в вычислении для каждой вершины дерева (при движении справа налево) ожидае­мых денежных оценок, отбрасывании неперспективных ветвей и выборе ветвей, которым соответствует максимальное значение ОДО.

Определим средний ожидаемый выигрыш (ОДО):

• для вершины 1 ОДО1 = 0,5*200 000 + 0,5(-180 000) = 10 000 дол.;

• для вершины 2 ОДО2 = 0,5*100 000 + 0,5(-20 000) = 40 000 дол.;

• для вершины 3 ОДО3 = 10 000 дол.

Вывод. Наиболее целесообразно выбрать стратегию а2, т.е. строить малое предприятие, а ветви (стратегии) а1 и а3 дерева решений можно отбросить. ОДО наилучшего решения равна 40 000 дол. Следует отметить, что наличие состояния с вероят­ностями 50 % неудачи и 50 % удачи на практике часто означает, что истинные вероятности игроку скорее всего неизвестны и он всего лишь принимает такую гипотезу (так называемое предпо­ложение «fifty - fifty» - пятьдесят на пятьдесят).

Усложним рассмотренную выше задачу.

Пусть перед тем, как принимать решение о строительстве, руководство компании должно определить, заказывать ли допол­нительное исследование состояния рынка или нет, причем пре­доставляемая услуга обойдется компании в 10 000 дол. Руковод­ство понимает, что дополнительное исследование по-прежнему не способно дать точной информации, но оно поможет уточнить ожидаемые оценки конъюнктуры рынка, изменив тем самым значения вероятностей.

Относительно фирмы, которой можно заказать прогноз, изве­стно, что она способна уточнить значения вероятностей благо­приятного или неблагоприятного исхода. Возможности фирмы в виде условных вероятностей благоприятности и неблагоприят­ности рынка сбыта представлены в табл. 3.2. Например, когда фирма утверждает, что рынок благоприятный, то с вероятностью 0,78 этот прогноз оправдывается (с вероятностью 0,22 могут возникнуть неблагоприятные условия), прогноз о неблагоприят­ности рынка оправдывается с вероятностью 0,73.

Таблица 3.2

Прогноз фирмы Фактически  
Благоприятный Неблагоприятный  
Благоприятный 0,78 0,22
Неблагоприятный 0,27 0,73

 

Предположим, что фирма, которой заказали прогноз состоя­ния рынка, утверждает:

• ситуация будет благоприятной с вероятностью 0,45;

• ситуация будет неблагоприятной с вероятностью 0,55.

На основании дополнительных сведений можно построить новое дерево решений (рис. 3.2), где развитие событий происхо­дит от корня дерева к исходам, а расчет прибыли выполняется от конечных состояний к начальным.

Рис. 3.2. Дерево решений при дополнительном обследовании рынка (см. условные обозначения к рис. 3.1)

Анализируя дерево решений, можно сделать следующие выводы:

• необходимо проводить дополнительное исследование конъ­юнктуры рынка, поскольку это позволяет существенно уточнить принимаемое решение;

• если фирма прогнозирует благоприятную ситуацию на рынке, то целесообразно строить большое предприятие (ожида­емая максимальная прибыль 116 400 дол.), если прогноз не­благоприятный - малое (ожидаемая максимальная прибыль 12 400 дол.).

3.4.3. ОЖИДАЕМАЯ ЦЕННОСТЬ ТОЧНОЙ ИНФОРМАЦИИ

Предположим, что консультационная фирма за определенную плату готова предоставить информацию о фактической ситуации на рынке в тот момент, когда руководству компании надлежит принять решение о масштабе производства. Принятие предложе­ния зависит от соотношения между ожидаемой ценностью (ре­зультативностью) точной информации и величиной запрошенной платы за дополнительную (истинную) информацию, благодаря которой может быть откорректировано принятие решения, т.е. первоначальное действие может быть изменено.

Ожидаемая ценность точной информации о фактическом состоянии рынка равна разности между ожидаемой денежной оценкой при наличии точной информации и максимальной ожидаемой денежной оценкой при отсутствии точной инфор­мации.

Рассчитаем ожидаемую ценность точной информации для примера, в котором дополнительное обследование конъюнктуры рынка не проводится. При отсутствии точной информации, как уже было показано выше, максимальная ожидаемая денежная оценка равна:

ОДО = 0,5 * 100 000 - 0,5 * 20 000 = 40 000 дол.

Если точная информация об истинном состоянии рынка бу­дет благоприятной (ОДО =200 000 дол., см. табл. 3.1), принима­ется решение строить крупное производство; если неблагоприятной, то наиболее целесообразное решение - продажа патента (ОДО=10 000 дол.). Учитывая, что вероятности благоприятной и неблагоприятной ситуаций равны 0,5, значение ОДОт.и (ОДО точной информации) определяется выражением:

ОДОт.и = 0,5 * 200 000 + 0,5 * 10 000 = 105 000 дол.

Тогда ожидаемая ценность точной информации равна:

ОЦт.и = ОДОт.и - ОДО = 105 000 - 40 000 = 65 000 дол.

Значение ОЦт.и показывает, какую максимальную цену должна быть готова заплатить компания за точную информацию об ис­тинном состоянии рынка в тот момент, когда ей это необходимо.

3.5. ЗАДАЧИ С РЕШЕНИЯМИ

Задача 3.5. Компания «Российский сыр» - небольшой произ­водитель различных продуктов из сыра на экспорт. Один из продуктов - сырная паста - поставляется в страны ближнего зарубежья. Генеральный директор должен решить, сколько ящи­ков сырной пасты следует производить в течение месяца. Веро­ятности того, что спрос на сырную пасту в течение месяца будет 6, 7, 8 или 9 ящиков, равны соответственно 0,1; 0,3; 0,5; 0,1.

Затраты на производство одного ящика равны 45 дол. Компа­ния продает каждый ящик по цене 95 дол. Если ящик с сырной пастой не продается в течение месяца, то она портится и компа­ния не получает дохода. Сколько ящиков следует производить в течение месяца?

Решение. Пользуясь исходными данными, строим матри­цу игры. Стратегиями игрока 1 (компания «Российский сыр») являются различные показатели числа ящиков с сырной пас­той, которые ему, возможно, следует производить. Состояниями природы выступают величины спроса на аналогичное число ящиков.

Вычислим, например, показатель прибыли, которую получит производитель, если он произведет 8 ящиков, а спрос будет толь­ко на 7.

Каждый ящик продается по 95 дол. Компания продала 7, а произвела 8 ящиков. Следовательно, выручка будет 7*95, а из­держки производства 8 ящиков 8*45. Итого прибыль от указан­ного сочетания спроса и предложения будет равна: 7*95 - 8*45 = 305 дол. Аналогично производятся расчеты при других соче­таниях спроса и предложения.

В итоге получим следующую платежную матрицу в игре с природой (табл. 3.3). Как видим, наибольшая средняя ожидаемая прибыль равна 352,5 дол. Она отвечает производству 8 ящиков.

Таблица 3.3

 

* В скобках приведена вероятность спроса на ящики.

 

На практике чаще всего в подобных случаях решения принима­ются исходя из критерия максимизации средней ожидаемой прибы­ли или минимизации ожидаемых издержек. Следуя такому подходу, можно остановиться на рекомендации производить 8 ящиков, и для большинства ЛПР рекомендация была бы обоснованной. Именно так поступаем мы, когда в гл. 6 - 8 рассматриваем различные при­кладные задачи принятия решений в играх с природой.

Однако, привлекая дополнительную информацию в форме расчета среднего квадратичного отклонения как индекса риска, мы можем уточнить принятое на основе максимума прибыли или минимума издержек решение. Это в полной мере согласуется с характеристиками вариантов, представленных на рис. 1.1. Допол­нительные рекомендации могут оказаться неоднозначными, за­висимыми от склонности к риску ЛПР.

Вспомним необходимые для наших исследований формулы теории вероятностей [2, с. 109, 119]:

дисперсия случайной величины x, равна

Dx = M(x2) – (Mx)2;

среднее квадратичное отклонение

где D и М - соответственно символы дисперсии и математического ожидания.

Проводя соответствующие вычисления для случаев производ­ства 6, 7, 8 и 9 ящиков, получаем:

6 ящиков

 

7 ящиков

8 ящиков

9 ящиков

Вывод. Из представленных результатов расчетов с учетом полученных показателей рисков - средних квадратичных отклоне­нии - очевидно, что производить 9 ящиков при любых обстоятель­ствах нецелесообразно, ибо средняя ожидаемая прибыль, равная 317, меньше, чем для 8 ящиков (352,5), а среднее квадратичное откло­нение (76) для 9 ящиков больше аналогичного показателя для 8 ящиков (63,73). А вот целесообразно ли производство 8 ящиков по сравнению с 7 или 6 - неочевидно, так как риск при производстве 8 ящиков (sx = 63,73) больше, чем при производстве 7 ящиков (sx = 28,5) и тем более 6 ящиков, где sx = 0. Вся информация с учетом ожидаемых прибылей и рисков налицо. Решение должен принимать генеральный директор компании «Российский сыр» с учетом его опыта, склонности к риску и степени достоверности показателей вероятностей спроса: 0,1; 0,3; 0,5; 0,1. Авторы, учиты­вая все приведенные числовые характеристики случайной величи­ны - прибыли, склоняются к рекомендации производить 7 ящиков (не 8, что вытекает из максимизации прибыли без учета риска!). Читателю предлагается обосновать свой выбор.

Задача 3.6. Рассмотрим упомянутую выше проблему закупки угля для обогрева дома. Имеются следующие данные о количестве и ценах угля, необходимого зимой для отопления дома (табл. 3.4). Вероятности зим: мягкой - 0,35; обычной - 0,5; холодной - 0,15.

Таблица 3.4

Зима Количество угля, т Средняя цена за 1 т в ф. ст.
Мягкая   
Обычная 7,5
Холодная   

 

Эти цены относятся к покупкам угля зимой. Летом цена угля 6 ф. ст. за 1 т, у вас есть место для хранения запаса угля до 6 т, заготавливаемого летом. Если потребуется зимой докупить недо­стающее количество угля, докупка будет по зимним ценам. Пред­полагается, что весь уголь, который сохранится до конца зимы, в лето пропадет.* Сколько угля летом покупать на зиму?

* Предположение делается для упрощения постановки и решения задачи.

 

Решение. Построим платежную матрицу (табл. 3.5).

Таблица 3.5

 

Произведем расчет ожидаемой средней платы за уголь (табл. 3.6).

Таблица 3.6

Зима Средняя ожидаемая плата
Мягкая -(24*0,35+31,5*0,5+40*0,15)= -30,15
Обычная -(30*0,35+30*0,5+38*0,15)= -31,2
Холодная -(36*0,35+36*0,5+36*0,15)= -36

 

Как видим из табл. 3.6, наименьшая ожидаемая средняя пла­та приходится на случай мягкой зимы (30,15 ф. ст.). Соответ­ственно если не учитывать степени риска, то представляется целесообразным летом закупить 4 т угля, а зимой, если потребу­ется, докупить уголь по более высоким зимним ценам.

Если продолжить исследование процесса принятия решения и аналогично задаче 3.5 вычислить средние квадратичные откло­нения платы за уголь для мягкой, обычной и холодной зимы, то соответственно получим:

для мягкой зимыsx = 5,357;

• для обычной зимы sx = 2,856;

• для холодной зимы sx = 0.

Минимальный риск, естественно, будет для холодной зимы, однако при этом ожидаемая средняя плата за уголь оказывается максимальной - 36 ф. ст.

Вывод. Мы склоняемся к варианту покупки угля для обыч­ной зимы, так как согласно табл. 3.6 ожидаемая средняя плата за уголь по сравнению с вариантом для мягкой зимы возрастает на 3,5 %, а степень риска при этом оказывается почти в 2 раза меньшей (sx = 2,856 против 5,357).

Отношение среднего квадратичного отклонения к математи­ческому ожиданию (средний риск на затрачиваемый 1 ф. ст.) для обычной зимы составляет = 0,0915 против аналогичного показателя для мягкой зимы, равного = 0,1777, т.е. вновь различие почти в 2 раза.

Эти соотношения и позволяют нам рекомендовать покупку угля, ориентируясь не на мягкую, а на обычную зиму.

Задача 3.7. АО «Фото и цвет» - небольшой производитель химических реактивов и оборудования, которые используются не­которыми фотостудиями при изготовлении 35-мм фильмов. Один из продуктов, который предлагает «Фото и цвет», - ВС-6. Пре­зидент АО продает в течение недели 11, 12 или 13 ящиков ВС-6. От продажи каждого ящика АО получает 35 дол. прибыли. Как и многие фотографические реактивы, ВС-6 имеет очень малый срок годности. Поэтому, если ящик не продан к концу недели, он должен быть уничтожен. Каждый ящик обходится предприятию в 56 дол. Вероятности продать 11, 12 и 13 ящиков в течение недели равны соответственно 0,45; 0,35; 0,2. Как вы советуете поступить? Как вы порекомендуете поступить, если бы «Фото и цвет» мог сделать ВС-6 с добавкой, значительно про­длевающей срок его годности?

Решение. Матрицу игры с природой (здесь АО «Фото и цвет» - игрок с природой, а природа - торговая конъюнкту­ра) строим по аналогии с рассмотренными выше задачами (табл. 3.7).

Таблица 3.7

* В скобках приведены вероятности спроса на ящики.

 

Расчет средней ожидаемой прибыли производится с исполь­зованием вероятностей состояний природы, как и в задачах 3.5 и 3.6.

Вывод. Наибольшая из средних ожидаемых прибылей (385 дол.) отвечает при заданных возможностях спроса произ­водству 11 ящиков ВС-6.

Производство 11 ящиков в неделю и следует рекомендовать АО «Фото и цвет», ибо показатель риска - среднее квадратичное отклонение, как нетрудно убедиться, sx = 0 - минимален при максимальной средней ожидаемой прибыли.

Если срок службы химического реактива будет удлинен, то его производство даже при прежнем спросе можно увеличить, частично поставляя на склад для последующей реализации.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Задача 3.8. Компания, производящая стиральный порошок, работа­ет в условиях свободной конкуренции. Порошок выпускается блоками, причем цена одного блока в будущем месяце является неопределенной: 10 руб. с вероятностью 0,3; 15 руб. с вероятностью 0,5; 20 руб. с веро­ятностью 0,2. Полные затраты (ПЗ) на производство Q блоков стираль­ного порошка определяются зависимостью ПЗ = 1000 + 5Q + 0,0025Q2.

Постройте таблицу решений и определите суточный выпуск про­дукции компании (в блоках), при котором среднесуточная прибыль будет максимальной.

Задача 3.9. Спрос на некоторый товар, производимый монополис­том, определяется зависимостью Q = 100 — 5р + 5j, где j - достоверно неизвестный уровень дохода потребителей, р - цена товара. По оцен­кам экспертов,

Полные затраты на производство товара определяются зависимос­тью ПЗ = 5 + 4Q + 0,05Q2. Сколько товара должен выпускать монопо­лист и по какой цене продавать, чтобы максимизировать свою ожида­емую прибыль?

Задача 3.10. Молодой российский бизнесмен предполагает постро­ить ночную дискотеку неподалеку от университета. По одному из допу­стимых проектов предприниматель может в дневное время открыть в здании дискотеки столовую для студентов и преподавателей. Другой вариант не связан с дневным обслуживанием клиентов. Представлен­ные бизнес-планы показывают, что план, связанный со столовой, может принести доход в 250 тыс. руб. Без открытия столовой бизнесмен мо­жет заработать 175 тыс. руб. Потери в случае открытия дискотеки со столовой составят 55 тыс. руб., а без столовой- 20 тыс. руб. Определи­те наиболее эффективную альтернативу на основе средней стоимост­ной ценности в качестве критерия.

Задача 3.11. Небольшая частная фирма производит косметическую продукцию для подростков. В течение месяца реализуется 15, 16 или 17 упаковок товара. От продажи каждой упаковки фирма получает 75 руб. прибыли. Косметика имеет малый срок годности, поэтому, если упаковка не продана в месячный срок, она должна быть уничтожена. Посколь­ку производство одной упаковки обходится в 115 руб., потери фирмы составляют 115 руб., если упаковка не продана к концу месяца. Веро­ятности продать 15, 16 или 17 упаковок за месяц составляют соответ­ственно 0,55; 0,1 и 0,35. Сколько упаковок косметики следует произво­дить фирме ежемесячно? Какова ожидаемая стоимостная ценность это­го решения? Сколько упаковок можно было бы производить при значи­тельном продлении срока хранения косметической продукции?

Задача 3.12. Магазин «Молоко» продает в розницу молочные про­дукты. Директор магазина должен определить, сколько бидонов смета­ны следует закупить у производителя для торговли в течение недели. Вероятности того, что спрос на сметану в течение недели будет 7, 8, 9 или 10 бидонов, равны соответственно 0,2; 0,2; 0,5 и 0,1. Покупка одного бидона сметаны обходится магазину в 70 руб., а продается сметана по цене 110 руб. за бидон. Если сметана не продается в течение недели, она портится, и магазин несет убытки. Сколько бидонов сметаны жела­тельно приобретать для продажи? Какова ожидаемая стоимостная цен­ность этого решения?

Задача 3.13. Найти наилучшие стратегии по критериям: максимакса, Вальда, Сэвиджа, Гурвица (коэффициент пессимизма равен 0,2), Гурвица применительно к матрице рисков (коэффициент пессимизма равен 0,4) для следующей платежной матрицы игры с природой (эле­менты матрицы - выигрыши):

Задача 3.14. Директор лицея, обучение в котором осуществляется на платной основе, решает, следует ли расширять здание лицея на 250 мест, на 50 мест или не проводить строительных работ вообще. Если население небольшого города, в котором организован платный лицей, будет расти, то большая реконструкция могла бы принести прибыль 250 тыс. руб. в год, незначительное расширение учебных помещений могло бы приносить 90 тыс. руб. прибыли. Если население города уве­личиваться не будет, то крупное расширение обойдется лицею в 120 тыс. руб. убытка, а малое - 45 тыс. руб. Однако информация о том, как будет изменяться население города, отсутствует. Построите дерево ре­шений и определите лучшую альтернативу, используя критерии Вальда. Чему равно значение ОДО для наилучшей альтернативы в отсутствие необходимой информации?

Пусть при тех же исходных данных государственная статистичес­кая служба предоставила информацию об изменении численности на­селения: вероятность роста численности населения составляет 0,7; ве­роятность того, что численность населения останется неизменной или будет уменьшаться, равна 0,3. Определите наилучшее решение, исполь­зуя критерий максимизации ожидаемой денежной оценки. Чему равно значение ОДО для наилучшей альтернативы при получении дополни­тельной информации? Какова ожидаемая ценность дополнительной ин­формации?

Задача 3.15. При крупном автомобильном магазине планируется открыть мастерскую по предпродажному обслуживанию и гарантийно­му ремонту автомобилей. Консультационная фирма готова предоставить дополнительную информацию о том, будет ли рынок благоприятным или нет. Эти сведения обойдутся магазину в 13 тыс. руб. Администра­ция магазина считает, что эта информация гарантирует благоприятный рынок с вероятностью 0,5. Если рынок будет благоприятным, то боль­шая мастерская принесет прибыль в 60 тыс. руб., а маленькая - 30 тыс. руб. При неблагоприятном рынке магазин потеряет 65 тыс. руб., если будет открыта большая мастерская, и 30 тыс. руб.- если откроется маленькая. Не имея дополнительной информации, директор оценивает вероятность благоприятного рынка как 0,6. Положительный результат обследования гарантирует благоприятный рынок с вероятностью 0,8. При отрицательном результате рынок может оказаться благоприятным с вероятностью 0,3. Постройте дерево решений и определите:

• Следует ли заказать консультационной фирме дополнительную информацию, уточняющую конъюнктуру рынка?

• Какую мастерскую следует открыть при магазине: большую или маленькую?

• Какова ожидаемая денежная оценка наилучшего решения?

• Какова ожидаемая ценность дополнительной информации?

Задача 3.16. Фирма, производящая вычислительную технику, про­вела анализ рынка нового высокопроизводительного персонального компьютера. Если будет выпущена крупная партия компьютеров, то при благоприятном рынке прибыль составит 250 тыс. руб., а при неблагоп­риятных условиях фирма понесет убытки в 185 тыс. руб. Небольшая партия техники в случае ее успешной реализации принесет фирме 50 тыс. руб. прибыли и 10 тыс. руб. убытков - при неблагоприятных внешних условиях. Возможность благоприятного и неблагоприятного исходов фирма оценивает одинаково. Исследование рынка, которое мо­жет провести эксперт, обошлось фирме в 15 тыс. руб. Эксперт считает, что с вероятностью 0,6 рынок окажется благоприятным. В то же время при положительном заключении благоприятные условия ожидаются лишь с вероятностью 0,8. При отрицательном заключении с вероятно­стью 0,15 рынок также может оказаться благоприятным. Используйте дерево решений для того, чтобы помочь фирме выбрать правильную технико-экономическую стратегию. Ответьте на следующие вопросы:

• Следует ли заказывать эксперту дополнительное обследование рынка?

• Какую максимальную сумму фирма может выплатить эксперту за проделанную работу?

• Какова ожидаемая денежная оценка наилучшего решения?

Задача 3.17. Автомобильный завод получает реле поворота от двух поставщиков: А и В. Качество этих изделий характеризуется данными в табл.3.8.

Таблица 3.8

Процент брака Вероятность для поставщика  
А В  
0,7 0,4
0,1 0,3
0,09 0,15
0,07 0,1
0,04 0,05

 

Полные затраты, связанные с ремонтом одного бракованного реле, составляют 5 руб.

Реле поступают партиями по 20 000 шт. Поскольку качество изде­лий у поставщика В хуже, он уступает всю партию на 500 руб. дешевле. Постройте дерево решений. Какого поставщика следует выбрать?

Глава 4 ФУНКЦИЯ ПОЛЕЗНОСТИ НЕЙМАНА - МОРГЕНШТЕРНА

4.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И АКСИОМЫ

Обоснование выбора решения в предыдущих главах выпол­нялось с позиции объективиста. Если же ЛПР - субъективист, то он будет руководствоваться индивидуально определенным БДЭ. Поясним смысл этой величины. Рассмотрим ситуацию, когда игрок с вероятностью 0,8 выигрывает 40 дол. и с вероятностью 0,2 проигрывает 20 дол. Попробуем выяснить, за какую сумму ЛПР уступит свое право участвовать в игре. Как отмечалось, объективист пользуется правилом: БДЭ = ОДО = 0,8*40 + 0,2 (–20) = 28 дол. Поэтому свое право на игру он уступит не менее чем за 28 дол. Субъективист, как правило, готов уступить свое право на игру за меньшую сумму, поскольку для него БДЭ < ОДО. Причинами такого поведения могут быть:

• финансовое состояние игрока (возможно, он на грани бан­кротства и ему необходимы денежные средства);

• отношение игрока к риску вообще (склонность к риску);

• настроение или состояние здоровья игрока;

• множество других, даже непосредственно не относящихся к бизнесу причин.

Величина БДЭ может изменяться со временем в зависимости от обусловленных указанными причинами обстоятельств. Например, в случае катастрофической нехватки финансовых средств (наличных денег) право на игру можно уступить и за более низкий эквивалент.

Предыдущая статья:ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 3 страница Следующая статья:ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 5 страница
page speed (0.038 sec, direct)