Теория подобия в приложениях конвективного теплообмена, критерии подобия и критериальные уравнения.
274
Конвективный теплообмен описывается системой дифференциальных уравнений и условиями однозначности с большим количеством переменных. Аналитическое решение полной системы уравнений наталкивается на серьезные трудности.
Поэтому большое значение приобретает экспериментальный путь исследования. С помощью эксперимента для определенных значений аргументов можно получить числовые значения искомых переменных и затем подобрать уравнения, описывающие результаты опытов.
Однако для исследования влияния на процесс какой-либо одной величины остальные нужно сохранять неизменными, что не всегда возможно из-за большого количества переменных.
Кроме того, при этом нужно быть уверенным, что результаты, получаемые с помощью какой-либо конкретной установки (модели), можно перенести и на другие аналогичные процессы (образец).
Эти трудности помогает разрешить теория подобия.
С помощью теории подобия размерные физические величины можно объединить в безразмерные комплексы, причем так, что число комплексов будет меньше числа величин, из которых составлены эти комплексы. Полученные безразмерные комплексы можно рассматривать как новые переменные.
При введении в уравнения безразмерных комплексов число величин под знаком искомой функции формально сокращается, что упрощает исследование физических процессов.
Кроме того, новые безразмерные переменные отражают влияние не только отдельных факторов, но и их совокупности, что позволяет легче определить физические связи в исследуемом процессе.
Для практического использования выводов теории подобия необходимо уметь приводить к безразмерному виду математические описания изучаемых процессов.