Всего на сайте:
236 тыс. 713 статей

Главная | Статистика

Задание. Дайте характеристику связей и возможностей повышения цен на каждый вид товара  Просмотрен 638

  1. АГРЕГАТНЫЕ И СРЕДНИЕ ИНДЕКСЫ
  2. ТЕМА 23. ДРУГИЕ ВИДЫ ИНДЕКСОВ ПРИМЕНЯЕМЫЕ В СТАТИСТИКЕ
  3. Контрольное задание. Индексы занимают особое место в статистике. Без них невозможно изучение динамики ...
  4. Задание. Приведите пример корреляционных по своей сути связей
  5. Задание. Известно, что спрос связан с предложением, что может составить ошибку ...
  6. Задание. Вам предлагается выписать и еще раз осмыслить все уравнения рег­рессии (модели), встретившиеся в тексте данной Темы, привести соот­ветствующие им системы нормальных уравнений и формулы определения параметров уравнений
  7. Контрольное задание. На основе использования данных Контрольного задания из Темы 5 и материалов ...
  8. Задание. Попробуйте сами рассчитать коэффициенты корреляции рангов К.Спирмэна и М.Кендэла на каком-либо произвольном примере
  9. МЕТОДЫ ФАКТОРНОГО АНАЛИЗА И МНОГОМЕРНОЙ КЛАССИФИКАЦИИ
  10. Задание. Придумайте 5 примеров из жизни вашего предприятия или из бытовой жизни, где можно использовать дисперсионный анализ
  11. Задание. Придумайте 4 примера из жизни вашего предприятия или из бытовой жизни, где можно использовать факторный анализ. Особое внимание уделите обоснованию факторов
  12. РАЗДЕЛ 7. ВЫВОДЫ. Завершив изучение этого модуля, Вы ознакомились с основными по­ложениями регрессионно-корреляционного анализа взаимосвязей общест­венных явлений, МЕТОДЫ ФАКТОРНОГО АНАЛИЗА И МНОГОМЕРНОЙ КЛАССИФИКАЦИИ

Связь между ценами на товары (при 54 наблюдениях) и количеством продаж характеризуется следующими коэффициентами корреляции;

1. 0,765

2. 0,33

3. 0,48

4. 0,89

5. 0,96

Дайте характеристику связей и возможностей повышения цен на каждый вид товара.

 

Качество статистических моделей может быть установлено на основе анализа остаточной последовательности. Остаточная последовательность проверяется на выполнение свойств случайной компоненты экономического ряда: близость нулю выборочного среднего, случайный характер отклонений, отсутствие автокорреляции и нормальность закона распределения.

О качестве моделей регрессии можно судить также по значениям коэффициента корреляции и коэффициента детерминации для однофакторной модели. Чем ближе абсолютные величины указанных коэффициентов к 1, тем теснее связь между изучаемым признаком и выбранными факторами и, следовательно, с тем большей уверенностью можно судить об адекватности построенной модели, включающей в себя наиболее влияющие факторы.

Для оценки точности регрессионных моделей обычно используются, средняя относительная ошибка аппроксимации.

Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как

Расчетное значение F-критерия сравнивают c табличным (таблица 1, приложения 4) при заданном уровне значимости гипотезы (обычно 0,05) и степенях свободы f1 = n – 1 и f2 = n - m - 1 , где n – обьем выборки, m – число включенных факторов в модель.

Для нашего случая f1 = 8, f2 = 7. Табличное значение F – критерия находим по таблице 2 приложения 4 Ft = 3,50.

Если расчетное значение F – критерия больше табличного, то модель считается адекватной исходным данным.

В нашем случае 53,50 > 3,50, следовательно, модель значима и адекватно описывает исходные данные.

Эти же расчеты можно выполнить значительно быстрее при использовании ЭВМ. В электронных таблицах EXCEL в разделе меню СЕРВИС при полной инсталляции пакета присутствует функция АНАЛИЗ. При выборе этой функции открывается окно. В предлагаемом перечне необходимо выбрать раздел регрессия и в появившейся форме необходимо заполнить соответствующие поля. Исходные данные необходимо представить на рабочем листе в виде, показанном на рисунке

На рисунке представлена форма с заполненными исходными данными для проведения регрессионного анализа.

Рисунок 18

 

 

После нажатия клавиши OK, проводится расчет и результаты заносятся на новый лист в следующем виде.

Таблица 21

 

ВЫВОД ИТОГОВ       
Регрессионная статистика       
Множественный R 0,94046717          
R-квадрат 0,8844785          
Нормированный R-квадрат 0,86797542          
Стандартная ошибка 229,054087          
Наблюдения          
df SS MS F Значимость F  
Регрессия 53,594779 0,000159874  
Остаток 367260,4 52465,77      
Итого        
  Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95%  
Y-пересечение 660,106766 117,5052 5,61768 0,000801 382,2512536  
Переменная X 1 0,1075384 0,014689 7,320845 0,0001599 0,072803654  

 

Результаты расчетов в электронных таблицах EXCEL

 

Использование электронных таблиц EXCEL позволяет обойтись без таблиц с критическими значениями t-критерия и F-критерия. В результатах расчетов появляются новые значения Значимость F и Значимость t, которое определяет расчетный уровень значимости F и t-критериев по заданным исходным данным. Если это значение меньше заданного (0,05), то модель считается адекватной исходным данным и значимой.

В многофакторных моделях результативный признак зависит от нескольких факторов. Множественный или многофакторный корреляционно-регрессионный анализ решает три задачи: определяет форму связи результативного признака с факторными, выявляет тесноту этой связи и устанавливает влияние отдельных факторов. Для двухфакторной линейной регрессии эта модель имеет вид:

   

 

Параметры модели ao, a1, a2 находятся путем решения системы нормальных уравнений:

 

   

 

Покажем особенности эконометрического многофакторного анализа на рассмотренном выше примере, но введем дополнительный фактор – размер семьи. В таблице представлены статистические данные о расходах на питание, душевом доходе и размере семьи для девяти групп семей. Требуется проанализировать зависимость величины расходов на питание от величины душевого дохода и размера семьи.

 

Таблица 22

Номер группы Расход на питание (у) Душевой доход (х) Размер семей (чел)
1,5
2.1
2.7
3.2
3.4
3.6
3,7
4,0
3.7

 

 

Рассмотрим двухфакторную линейную модель зависимости расходов на питание (у) от величины душевого дохода семей (x1) и размера семей (x2). Результаты расчетов с использованием электронных таблиц EXCEL представлены в таблице.

Таблица 23

 

ВЫВОД ИТОГОВ       
Регрессионная статистика       
Множественный R 0,997558          
R-квадрат 0,995121          
Нормированный R-квадрат 0,993495          
Стандартная ошибка 50,84286          
Наблюдения          
df SS MS F Значимость F  
Регрессия 611,9239 1,1612E-07  
Остаток 15509,98 2584,996      
Итого        
             
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95%  
Y-пересечение -187,141 77,17245 -2,42498 0,051513 -375,97561  
Переменная X 1 0,071995 0,004463 16,13289 3,61E-06 0,06107576  
Переменная X 2 343,0222 29,40592 11,66507 2,39E-05 271,068413  

 

Регрессионная модель имеет следующий вид

Высокие значения коэффициента детерминации R2 = 0,995 и значение F – критерия однозначно говорит об адекватности полученной модели исходным данным. Необходимо отметить, что эти значения намного превышают значения R2 и F – критерия, которые были получены в модели с одним фактором. Таким образом, введение в модель еще одного фактора улучшает качество модели в целом.

В какой степени допустимо использовать критерий R2 для выбора между несколькими регрессионными уравнениями? Дело в том, что при добавлении очередного фактора R2 всегда возрастает и, если взять число факторов, равным числу наблюдений, то можно добиться того, что R2 = 1. Но это вовсе не будет означать, что полученная эконометрическая модель будет иметь экономический смысл.

Попыткой устранить эффект, связанный с ростом R2 при возрастании числа факторов, является коррекция значения R2 с учетом используемых факторов в нашей модели.

Скорректированный (adjusted) R2имеет следующий вид:

где n – объем выборки;

k – количество коэффициентов в уравнении регрессии.

Для нашего случая

В определенной степени использование скорректированного коэффициента детерминации R2 более корректно для сравнения регрессий при изменении количества факторов.

В том случае, когда имеются одна независимая и одна зависимая переменные, естественной мерой зависимости является (выборочный) коэффициент корреляции между ними. Использование множественной регрессии позволяет обобщить это понятие на случай, когда имеется несколько независимых переменных. Корректировка здесь необходима по следующим очевидным соображениям. Высокое значение коэффициента корреляции между исследуемой зависимой и какой-либо независимой переменной может, как и раньше, означать высокую степень зависимости, но может быть обусловлено и другой причиной. Например, может существовать третья переменная, которая оказывает сильное влияние на две первые, что и является, в конечном счете, причиной их высокой коррелированности. Поэтому возникает естественная задача найти «чистую» корреляцию между двумя переменными, исключив (линейное) влияние других факторов. Это можно сделать с помощью коэффициента частной корреляции:

   

где

Значения вычисляются как

 

Значения коэффициента частной корреляции лежат в интервале [-1,1], как у обычного коэффициента корреляции. Равенство этого коэффициента нулю означает, говоря нестрого, отсутствие прямого (линейного) влияния переменной X1 на У.

Существует тесная связь между коэффициентом частной корреляции и коэффициентом детерминации, а именно

   

или

Влияние отдельных факторов в многофакторных моделях может быть охарактеризовано с помощью частных коэффициентов эластичности, которые в случае линейной двухфакторной модели рассчитываются по формулам:

Черта над символом, как и ранее, означает среднюю арифметическую. Частные коэффициенты эластичности показывают, насколько процентов изменится результативный признак, если значение одного из факторных признаков изменится на 1%, а значение другого факторного признака останется неизменным.

Для определения области возможных значений результативного показателя при известных значениях факторов, т.е. доверительного интервала прогноза, необходимо учитывать два возможных источника ошибок. Ошибки первого рода вызываются рассеиванием наблюдений относительно линии регрессии, и их можно учесть, в частности, величиной среднеквадратической ошибки аппроксимации изучаемого показателя с помощью регрессионной модели (Sy)

Ошибки второго рода обусловлены тем, что в действительности жестко заданные в модели коэффициенты регрессии являются случайными величинами, распределенными по нормальному закону. Эти ошибки учитываются вводом поправочного коэффициента при расчете ширины доверительного интервала; формула для его расчета включает табличное значение t-статистики при заданном уровне значимости и зависит от вида регрессионной модели. Для линейной однофакторной модели величина отклонения от линии регрессии задается выражением (обозначим его R):

,где п – число наблюдений,

L – количество шагов вперед,

а – уровень значимости прогноза,

X – наблюдаемое значение факторного признака в момент t,

– среднее значение наблюдаемого фактора,

– прогнозное значение фактора на L шагов вперед.

Таким образом, для рассматриваемой модели формула расчета нижней и верхней границ доверительного интервала прогноза имеет вид:

   

где UL означает точечную прогнозную оценку изучаемого результативного показателя по модели на L шагов вперед.

 


  
 

 


Предыдущая статья:Задание. Вам предлагается выписать и еще раз осмыслить все уравнения рег­рессии (модели), встретившиеся в тексте данной Темы, привести соот­ветствующие им системы нормальных уравнений и формулы определения параметров уравнений Следующая статья:Контрольное задание. На основе использования данных Контрольного задания из Темы 5 и материалов ...
page speed (0.0313 sec, direct)