Показатели анализа ряда динамики. Прогнозирование на основе средних показателей ряда динамики
1607
При изучении динамики общественных явлений возникает проблема описания интенсивности изменения и расчета средних показателей динамики.
Анализ интенсивности изменения во времени осуществляется с помощью показателей, получаемых в результате сравнения уровней, к таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента прироста.
Система средних показателей включает средний уровень ряда, средний абсолютный прирост, средний темп роста, средний темп прироста.
Показатели анализа динамики могут вычисляться на постоянной и переменных базах сравнения. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, – базисным.
Для расчета показателей анализа динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем. В качестве базисного выбирается либо начальный уровень в ряду динамики, либо уровень, с которого начинается какой-то новый этап развития явления. Исчисляемые при этом показатели называются базисными.
Для расчета показателей анализа динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим. Вычисленные таким образом показатели анализа динамики называются цепными.
Важнейшим статистическим показателем анализа динамики является абсолютный прирост (сокращение), т.е. абсолютное изменение, характеризующее увеличение или уменьшение уровня ряда за определенный промежуток времени. Абсолютный прирост с переменной базой называют скоростью роста.
Абсолютный прирост (цепной): .
Абсолютный прирост (базисный): .
где – уровень сравниваемого периода;
– уровень предшествующего периода;
– уровень базисного периода.
Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных абсолютных приростов равна базисному, т.е. общему приросту за весь промежуток времени (
).
Для оценки интенсивности, т. е. относительного изменения уровня динамического ряда за какой-либо период времени исчисляют темпы роста (снижения).
Интенсивность изменения уровня оценивается отношением отчетного уровня к базисному.
Показатель интенсивности изменения уровня ряда, выраженный в долях единицы, называется коэффициентом роста, а в процентах – темпом роста. Эти показатели интенсивности изменения отличаются только единицами измерения.
Коэффициент роста: (цепной): ;
Коэффициент роста: (базисный) ;
Темп роста (цепной): ;
Темп роста (базисный): .
Итак, = Кр*100.
Цепные и базисные коэффициенты роста, характеризующие интенсивность изменения производства.
Между цепными и базисными коэффициентами роста существует взаимосвязь (если базисные коэффициенты исчислены по отношению к начальному уровню ряда динамики): произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста за весь период (П
), а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста.
Относительную оценку скорости измерения уровня ряда в единицу времени дают показатели темпа прироста (сокращения).
Темп прироста (сокращения)показывает на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения, и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения.
Темп прироста может быть положительным, отрицательным или равным нулю, выражается он в процентах и долях единицы (коэффициенты прироста).
Темп прироста (цепной): ;
Темп прироста (базисный): .
Темп прироста (сокращения) можно получить и из темпа роста, выраженного в процентах, если из него вычесть 100%. Коэффициент прироста получается вычитанием единицы из коэффициента роста: =
-100;
= Кр-1.
При анализе динамики развития следует также знать, какие абсолютные значения скрываются за темпами роста и прироста. Сравнение абсолютного прироста и темпа прироста за одни и те же периоды времени показывает, что при снижении (замедлении) темпов прироста абсолютный прирост не всегда уменьшается, в отдельных случаях он может возрастать. Поэтому, чтобы правильно оценить значение полученного темпа прироста, его рассматривают в сопоставлении с показателем абсолютного прироста. Результат выражают показателем, который называют абсолютным значением (содержанием)одного процента приростаи рассчитывают как отношение абсолютного прироста к темпу прироста за тот же период времени, %: