Всего на сайте:
248 тыс. 773 статей

Главная | Статистика

ТЕМА № 4. МНОГОФАКТОРНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ.. (Эконометрия).  Просмотрен 2335

  1. ТЕМА №3. ПРОСТАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ.. (Эконометрия).
  2. Предпосылок о стохастических и прочих свойствах составных частей этого уравнения.. (Эконометрия).
  3. Определение параметров при степенной зависимости. (Эконометрия).
  4. Определение параметров показательной регрессии. (Эконометрия).
  5. Определение параметров параболы. (Эконометрия).
  6. Ты регрессии и корреляции незначимы.. (Эконометрия).
  7. ПРОСТРАНСТВЕННАЯ КОРРЕЛЯЦИЯ ВОЗМУЩЕНИЙ (Гетероскедастичность остатков).. (Эконометрия).
  8. Автокорреляция остатков. (Эконометрия).
  9. П.6. d-тест Дарбина-Уотсона на наличие автокорреляции возмущений (d-тест Д-У). (Эконометрия).
  10. Области принятия решений при d-тесте нулевой гипотезы с тремя альтернативными гипотезами.. (Эконометрия).
  11. При подозрении на автокорреляцию оценка по методу Эйткена может быть проведена только с использованием вспомогательной модели следую-. (Эконометрия).
  12. Точечные и интервальные прогнозы регрессанда. (Эконометрия).

Как известно, все явления складываются под воздействием не одного, а нескольких факторов. Между факторами существуют сложные взаимосвязи, поэтому их влияние комплексное и его нельзя рассматривать как простую сумму изолированных влияний. В этом случае используют многофакторную економетрическую модель. Ее анализ удобно проводить используя элементы матричной алгебры. При этом объект исследования представляют регрессионной функцией:

 

, (4.1)

где Y– регрессанд, X1, X2, …, Xm – регрессоры, U – случайные переменные.

Для реализации случайных переменных Ytи Utуравнение (4.1) примет вид:

(4.2)

Чтобы статистически оценить параметры регрессионной модели, необходимы ряды данных длиной п для регрессандов (Y) и для каждого из К регрессоров (переменных Х). При этом длина рядов наблюдений должна быть больше количества регрессоров (п>m). Длина временных рядов образует опорный (базовый) период. Для наблюдаемых в моменты времени t =1, 2, …, п значений можно записать п уравнений регрессии:

, (4.3)

где

(4.4)

Вектор наблюдений Y и матрица наблюдений Х образуют матрицу данных D.

(4.5)

Она содержит все данные, необходимые для статистической оценки вектора коэффициентов регрессии и прочих параметров модели.

Метод оценки регрессионных коэффициентов βm, в котором применяется сумма квадратов ошибок как мера качества адаптации эмпирической функции к наблюдаемым данным, называется одношаговым методом наименьших квадратов (1-МНК). Ошибка уравнения для t-го наблюдения равна:

(4.6)

Тогда сумма квадратов ошибок для Т наблюдений имеет вид:

(4.7)

или

Дифференцируя по , получим, с учетом необходимого условия существования минимума ( ):

, (4.8)

где - вектор коэффициентов регрессии минимизирующий ; выражение (4.8) называется системой нормальных уравнений.

Домножив слева равенство (4.8) на обратную матрицу , получим формулу для вычисления вектора 1-МНК оценок для :

(4.9)

Порядок расчетов по формуле (4.9) может быть следующим:

1. Вычислить ;

2. Определить вектор ;

3. Найти матрицу обратную матрице ;

4. Рассчитать как результат произведения на .

Подставив в оцениваемое уравнение, получим оцененную с помощью 1-МНК эмпирическую регрессионную функцию:

(4.10)

Эмпирический коэффициент βi определяет количество единиц, на которое изменится при изменении Xi на единицу при прочих равных условиях.

Все n значений – прогноз величины Y (величины ее математического ожидания) образуют вектор Ŷ:

Ŷ (4.11)

Тогда 1-МНК оценщик вектора возмущений u имеет вид:

(4.12)

Важной характеристикой регрессионной модели является дисперсия возмущений . Ее величина должна быть как можно меньше. 1-МНК оценщик для можно вычислить по одной из формул:

(4.13)

(4.14)

где - сумма квадратов ошибок; - количество степеней свободы; - сумма общих квадратов.

Для t – тестирования гипотез по отдельным коэффициентам регрессии и их линейным комбинациям необходимо знать элементы ковариационной матрицы. Ковариационная матрица для , оцененная методом 1-МНК, может быть представлена следующим образом:

(4.15)

На главной диагонали оцененной ковариационной матрицы , i-ый элемент является 1-МНК оценщиком дисперсии i-го коэффициента βi, а элемент , расположенный вне диагонали, является 1-МНК оценщиком ковариации между и . Наиболее желательными являются, по возможности, узкие доверительные и прогнозные интервалы. И, как следствие, меньшие оцененные дисперсии и ковариации.

Средние коэффициенты эластичности ,для линейной регрессии, расчитыва-

ютсяпо формуле:

Э yxj = аj xj / y (4.16)

Для измерения тесноты связи между двумя из рассматриваемых переменных

( без учета их взаимодействия с другими переменными ) применяются парные коэффициенты корреляции:

            
           


r y x1 = ( x1y –x1 y ) /σ x1 σy ; r y x2 = ( x2y – x2 y ) /σ x2 σy ;

r x1 x2 = ( x1 x2 – x1 x2 ) /σ x1 σ x2 . (4.17)

где

 

 

σ x1 = x1 2 - ( x1)2

  
 


σ x2 = x2 2 – ( x2) 2

  
 


σy = y 2 – ( y )2

Так как в реальных условиях все переменные, как правило,взаимосвязаны, то на значение коэффициента корреляции частично влияют другие переменные .В связи с этим возникает необходимость исследовать частную корреляцию между переменными при исключении ( элиминировании ) влияния одной или нескольких переменных. Теснота этой связи определяется частными коэффициентами корреляции.между переменными Xi и Xj при фиксированных значениях остальных m - 2 переменных по формуле:

  
 


r xixj ( x 1,x 2 , …, x m ) = - Аij / A ii * Ajj ,

где A ii и Ajj -алгебраические дополнения элементов rii и rjj матрицы парных коэффициентов корреляции ∆ r 11 или по рекуррентной формуле:

r xixj ( x 1,x 2,…,x i-1 ,x i+1 , …, x j-1, x j+1, … ,x m )=

rxixj, x 1,x 2,x i-1 ,x i+1 , …, x m -1-rxixm (x 1,x 2, …, x m –1)rxj x m(x 1,x2,…,xm -1)

( 1 –r2xixm( x 1,x 2, …, x m –1)) ( 1 –r2xj x m(x 1,x2,…,xm -1)) (4.18)

Частные коэффициенты ( индексы ) корреляции, измеряющие степень и влияние на у фактора хi при неизменом уровне других факторов, можно определить по рекуррентной формуле :

r yxi ( x 1,x 2,x i-1 ,x i+1 , …, x m )=

ryxi,x1,x2,x i-1 ,x i+1 ,…, xm -1-ryxm (x 1,x 2, …, x m –1)rxi x m(x1,x2,…,xm-1)

( 1 –r2yxm( x 1,x 2, …, x m –1)) ( 1 –r2xi x m(x 1,x2,…,xm -1))

 

В зависимости от количества переменных, влияние которых исключается, частные коэффициенты корреляции могут быть различного порядка: при исключе-

нии влияния одной переменной получим частный коэффициент корреляции первого порядка; при исключении влияния двух переменных - частный коэф-

фициент корреляции второго порядка и т. д.

Для двухфакторной модели частный коэффициент корреляции первого порядка между признаками х1 и у при исключении признака х2 вычисляют по формуле:

ry x 1 - ryx 2 rx 1x2

r yx1 ( x 2 ) = _______

( 1 – r2yx 2 ) ( 1 – r2x1x2 )

 

Для двухфакторной модели частный коэффициент корреляциипервого порядка между признаками х2 и у при исключении признака х1 вычисляют по формуле:

ry x 2 - ryx 1 rx 1x2

r yx2 ( x 1 ) = ________

( 1 – r2yx 1 ) ( 1 – r2x1x2 )

Для двухфакторной модели частный коэффициент корреляции первого порядка между признаками х1 и х2 при исключении влияния результативного признака у вычисляют по формуле:

 

rх1 x 2 - ryx 1 rуx

r х2x1 ( у ) = _______

( 1 – r2yx 1 ) ( 1 – r2уx2 ) ,

 

где ryxi – парные коэффициенты корреляции между соответствующими признаками.Очевидно, что коэффициент корреляции r между остатками будет отражать тесноту частной корреляции между переменными хi и хj при исключении влияния остальных переменных. Можно показать, что коэффициент корреляции r между остатками равен частному коэффициенту корреляции rxixj. Частный коэффициент корреляции , как и парный коэффициент rij , может принимать значения от –1 до 1 и его значимость оценивают так же, как и обычного коэффициента корреляции r, но при этом полагают df = n – m –2.

Изучение парных и частных коэффициентов корреляции позволяет отобрать наиболее существенные, значимые факторы. Тесноту совместного влияния фак

торов на результат оценивает коэффициент (индекс )множественной корреля-

ции R yx1x2,…,xm :

  
 


R yx1x2,…,xm = 1-σ2y ост.2y

 

Значение коэффициента (индекса) множественной корреляции лежит в пределах от 0 до 1 и должно быть больше или равно максимальному парному индексу корреляции r yxi .

В случае линейной двухфакторной связи совокупный коэффициент множественной корреляции можно найти следующим образом:

 

   
   
   
   


R yx1x2 = ( r2y x1+ r2y x2 – 2 r y x1 ry x2 rx1 x2 ) / ( 1 – r2x1 x2 )

Индекс множественной корреляции для уравнения в стандартизованном виде можно записать следующим образом:

  
 


R yx1x2,…,xm = Σ βι ryxι

При линейной зависимости коэффициент множественной корреляции можно, также, определить через матрицу парных коэффициентов корреляции:

  
 


R yx1x2,…,xm = 1- ∆ґ /∆ґ11 ,

где

1 ry x1 ry x2 … ry x m

∆ r = ry x1 1 rx1x2 … rx1 x m

ry x 2 rx2x1 1 … rx2 x m

--------------------------------------------------------

ry x m rxm x1 rxm x2 … 1

- определитель матрицы парных коэффициентов корреляции;

1 rx1 x2 rx1x3 … rx1x m

∆ r 11 = rx2 x1 1 rx2x3 … rx2 x m

rx3 x 1 rx3x2 1 … rx3 x m

--------------------------------------------------------

rx m x1 rxm x2 rxm x3 … 1

- определитель матрицы межфакторной корреляции.

 

Регрессионное уравнение оценено тем лучше, чем больше при прочих равных условиях R2.При вычислении R2 наблюдается следующая тенденция:R2 (c m+1 регрессорами) > R2 (c m регрессорами).Следовательно, уравнение с относительно большим числом регрессоров, как правило, будут давать лучшие результаты, чем с малым их количеством. Однако с каждым дополнительным регрессором теряется одна степень свободы, поэтому в статистическом отношении наличие дополнительного регрессора может быть не всегда желательным. Для того, чтобы определить на
какую величину уменьшается R2 если i-й регрессор будет исключен, используют частный коэффициент детерминации .

[2.5]

где ti- t – статистика для i-го коэффициента. Используя скорректированные коэффициенты детерминации можно определить изменение R2, вызванное дополнительным регрессором. Наиболее часто используются скорректированные коэффициенты по Тэйлу:

[2.6]

и по Амемии:

[2.7]

Совокупный коэффициент ( индекс ) множественной детерминации опреде

ляет только качество выравнивания по уравнению регрессии. Так как многофакторный регрессионный анализ оперирует случайными наблюдениями, и необязательно распределенными по многомерному нормальному закону ( этому закону должны подчиняться отклонения фактических значений регрессанда от расчетных ), то показатели множественной регрессии и корреляции сами могут оказаться подверженными действию случайных факторов. Поэтому только после проверки адекватности уравнения в целом, оно может использоваться для дальнейшего экономического анализа.

 

 

Общая оценка адекватности уравнения может быть получена с помощью дисперсионного F– критерия Фишера:

 

F = R²(n-m-1) / (1- R²). m, или F = σ ²у .(n-m-1) / σ ²ост.. m

 

где m -число факторов.( число параметров р = m + 1 )

Полученное значение F– критерия ( Fрасч. ) сравнивают с табличным для принятого уровня значимости и чисел степеней свободы k1 = m и k2 = n-m-1.

Если Fрасч. > Fтабл. , то уравнение регрессии статистически значимо, т.е.

доля вариации, обусловленная регрессией, намного превышает случайную ошибку.

Принято считать, что уравнение регрессии пригодно для практического использования в том случае, если Fрасч. > Fтабл не менее чем в 4 раза.

Частный F– критерий Фишера оценивает статистическую значимость присутствия каждого из факторов в уравнении регрессии и определяется по формуле:

 

R2 yx1x2,…,xm -r 2yxi (x 1,x 2,x i-1 ,x i+1 , …, x m).(n-m-1)

Fi част. =-------------------------------------------------------------------------,

R2 yx1x2,…,xm

Или

Fi = , где

Сii -i –ый диагональный элемент матрицы С обратной к корреляционной матрице R:

C = R-1 , где R = (XT.X)/(n –1)

Для оценки значимости коэффициентов регрессии при линейной зависимости используют t - критерий Стьюдента при n – (m + 1 ) степенях свободы :

    
   


ta1 = a1σx1 * √1-r2x1x2 * √n-m-1 / σy √1-R2yx1x2

    
   
    
     


ta2= a2σx2 * √1-r2x1x2 * √n-m-1 / σy√1-R2yx1x2

  
 


tRyx1x2 = Ryx1x2 * √n-m-1 / √1-R2yx1x2

 

Если в уравнении все коэффициенты регрессии значимы, то данное урав -

нение признают окончательным и применяют в качестве модели изучаемого показателя для последующего анализа.

Оценку значимости коеффициентов регрессии с помощью t – критерия

используют, также, для отбора существенных ( информативных ) факторов при многошаговом регрессионном анализе.Он заключается в том, что после оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьшее значение критерия. Затем строится уравнение регрессии без исключенного фактора, и снова проводится оценка адекватности уравнения и значимости коэфициентов регрессии. Процесс длится до тех пор, пока все коэффициенты регрессии не окажутся значимыми, что свидетельствует о наличии в регрессионной модели только существенных факторов.В некоторых случаях расчетное значение t расч. находится вблизи tтабл., поэтому с точки зрения содержательности модели такой фактор можно оставить для последующей проверки его значимости в сочетании с другим набором факторов.

При построении уравнения множественной регрессии может возникнуть проблемма мультиколлинеарности факторов, их тесной линейной связи.

Наиболее полно исследовать мультиколлинеарность можно с помощью алгоритма ФАРРАРА-ГЛОБЕРА.Он содержит три вида статистических критериев с помощью которых проверяется мультиколлинеарность соответственно: 1). всего массива объясняющих переменных (хи-квадрат);2). каждой объясняющей переменной с остальными объясняющими переменными ( F- критерий); 3).каждой пары объясняющих переменных ( t -критерий ).

АЛГОРИТМ ФАРРАРА –ГЛОБЕРА состоит из следующих шагов:

 

ШАГ 1. НОРМАЛИЗОВАТЬ ПЕРЕМЕННЫЕ ИСПОЛЬЗУЯ ФОРМУЛУ:

  
 


Х* = (Х – Х )/ σк

ШАГ 2. НАЙТИ КОРРЕЛЯЦИОННУЮ МАТРИЦУ R:

 

R = X* ′ ● X*

 

ШАГ 3. ОПРЕДЕЛИТЬ КРИТЕРИЙχ² = - [ n – 1 – 1/6(2m+5)] · ln |R|,

ГДЕ |R| -ОПРЕДЕЛИТЕЛЬ КОРРЕЛЯЦИОННОЙ МАТРИЦЫ.

 

ЗНАЧЕНИЕ ЭТОГО КРИТЕРИЯ СРАВНИВАЕТСЯ С χ²табл. ПРИ ½(р-1)(р-2)СТЕПЕНИ СВОБОДЫ И УРОВНЮ ЗНАЧИМОСТИα.ЕСЛИ χ²факт.<χ²табл. , ТО В МАССИВЕ НЕЗАВИСИМЫХ ПЕРЕМЕННЫХ МУЛЬТИКОЛЛИНЕАРНО

СТЬ ОТСУТСТВУЕТ.

ШАГ 4. ОПРЕДЕЛИТЬ МАТРИЦУ С ОБРАТНУЮ К R.

C = R ¯ ¹ = ( X*´X*)¯ ¹

ШАГ 5.РАССЧИТАТЬ F-КРИТЕРИИ:

 

Fk = ( Ckk - 1) (( n - р ) / ( р- 1)),

ГДЕ Ckk – ДИАГОНАЛЬНЫЕ ЭЛЕМЕНТЫ МАТРИЦЫ С.

 

ФАКТИЧЕСКИЕ ЗНАЧЕНИЯ КРИТЕРИЕВ Fk СРАВНИВАЮТСЯ С ТАБЛИЧНЫМИ ПРИ р-1И n-р СТЕПЕНЕЙ СВОБОДЫ И УРОВНЮ ЗНАЧИМОСТИ α.

ЕСЛИ Fk факт. > Fтабл. , ТО СООТВЕТСТВУЮЩАЯ k-Я ОБЪЯСНЯЮЩАЯ ПЕРЕМЕННАЯ МУЛЬТИКОЛЛИНЕАРНА С ДРУГИМИ.

КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ ДЛЯ k–ОЙ ПЕРЕМЕННОЙ ВЫЧИСЛЯЕТСЯ ПО ФОРМУЛЕ:

R²k = 1 – 1/Сkk.

ШАГ 6.НАЙТИ ЧАСТНЫЕ КОЭФФИЦИЕНТЫ КОРРЕЛЯЦИИ:

  
 


rki = - Скj / √ Скк· Cjj,

ГДЕ Скj -ЭЛЕМЕНТ МАТРИЦЫ С РАСПОЛОЖЕННЫЙ В к – ОЙ СТРОКЕ И j–ОМ СТОЛБЦЕ, Скк И С jj – ДИАГОНАЛЬНЫЕ ЭЛЕМЕНТЫ МАТРИЦЫ С.

 

ШАГ 7.РАССЧИТАТЬ t – КРИТЕРИИ:

    
   


tkj = ( rki *√ n – р )/√1-r²ki.

 

ФАКТИЧЕСКИЕ ЗНАЧЕНИЯ tkjСРАВНИВАЮТСЯ С ТАБЛИЧНЫМИ ПРИ n-рСТЕПЕНЕЙ СВОБОДЫ И УРОВНЕ ЗНАЧИМОСТИ α .ЕСЛИ tkjфакт. > tтабл. , ТО МЕЖДУ ПЕРЕМЕННЫМИ Хк И Хj СУЩЕСТВУЕТ МУЛЬТИКОЛЛИНЕАРНОСТЬ.

Для устранения или уменьшения мультиколлинеарности используется ряд методов.Самый простой из них состоит в том, что из двух объясняющих переменных, имеющих высокий коэффициент корреляции( больше 0,8 ),

одну из переменных исключают из рассмотрения.При этом, какую переменную оставить,а какую удалить из анализа, решают в первую очередь на основании экономических соображений.Если с экономической точки зрения ни одной из переменных нельзя отдать предпочтение, то оставляют ту из двух переменных, которая имеет больший коэффициент корреляции с зависимой переменной.

Другой метод устранения или уменьшения мультиколлинеарности заключается в переходе от несмещенных оценок, определяемых по методу 1-МНК, к смещенным оценкам, обладающим, однако, меньшим рассеянием относительно оцениваемого параметра.Так, например, при использовании “ридж-регрессии” или “ гребневой регрессии “вместо несмещенных оценок рассматривают смещенные оценки задаваемые вектором

β=(ХтХ+τEp+1)¯¹ X т У,

где τ– некоторое положительное число, называемое “ гребнем “ или “ хребтом “ , Ep+1- единичная матрица p+1 – го порядка.Добавление τ к диагональным элементам матрицы ХтХ делает оценки параметров модели смещенными, но при этом увеличивается определитель матрицы системы нормальных уравнений.Вместо ХтХ он будет равенХтХ+τEp+1 Таким образом, становится возможным исключение мультиколлинеарности в случае, когда определитель ХтХ близок к нулю.

Возможен, также, переход к новым переменным, представляющим линейные комбинации исходных.В качестве таких переменных берут, например главные компоненты вектора исходных объясняющих переменных и рассматривают регрессию на главных компонентах.

Еще одним из возможных методов устранения или уменьшения мультиколлинеарности является использование пошаговых процедур отбора наиболее информативных переменных.Например,на первом шаге рассматривается лишь одна переменная , имеющая с переменной У наибольший коэффициент детерминации.На втором шаге включается в регрессию новая переменная, которая вместе с первоначально отобранной образует пару переменных, имеющую с У наиболее высокий ( скорректированный ) коэффициент детерминации, и т. д. Процедура введения новых переменных продолжается до тех пор, пока будет увеличиваться соответствующий (скорректированный) коэффициент корреляции.

На основе коэффициентов регрессии невозможно указать какой из фактор-ных признаков оказывает наибольшее влияние на результативный признак у, так как они не сопоставимы между собой, поскольку измеряются разными единицами.На их основе невозможно также установить в развитии каких фак-

торных признаков заложены наиболее крупные резервы изменения регрессан

да у , потому что в них не учтена вариация факторных признаков.

Для ответа на выше перечисленные вопросы построим уравнение множественной регрессии в стандартизированном виде:

ty = βıtx ı + β2t x 2 + … + βptx p

где

ty = у – у /σу , tхi = ( xi – xi) /σxi - стандартизованные переменные, βi

стандартизованные коэффициенты.

Стандартизованные коэффициенты регрессии (β - коэффициенты ) опре-

деляются из следующей системы:

β1 + β2 rx1x2 + β3 rx1x3 + … + βp rx1xp = ryx1

β1 rx2x1 + β2 + β3 rx2x3 + … + βprx2xp = ryx2

…………………………………………………..

β1 rxpx1 + β2 rxpx23 rxpx3 + … + βp = ryxp

 

и показываютна какую часть среднего квадратичного отклонения изменяется регрессанд у ( результативный признак у ) с изменением соответствующего факторного признака на величину его среднего квадратичного отклонения.С помощью β – коэффициентов определяют факторы в развитии которых заложены наиболее крупные резервы изучаемого показателя.

Так как связь коэффициентов множественной регрессии ai со стандартными коэффициентами βi (β – коэффициентами) описывается соотношениями:

        
       


ai = βiσу / σxi;a0 = y - b1 x1 - b2 x2 - … - bp xp ,

 

то β - коэффициенты можно также найти по формулам:

 

βi = ai σxi/ σу,

Средние коэффициенты эластичности для линейной регрессии расчитываются по формуле:

Э yxj = аj xj /y

Частные коэффициенты эластичности вычисляются по формуле:

Э yxj = аj xjxi (x1,x2,xi-1, xi+1,…,xm)

и показываютнасколько процентов в среднем изменяется анализируемый показатель с изменением на 1% сответствующего фактора при фиксированном положении других факторов.

С помощью частных коэффициентов эластичности можно определить фак-

тор оказывающий наибольшее влияние на регрессанд у ( без учета различия в степени варьирования входящих в уравнение факторов, что, в отличие от β – коэффициентов не дает возможности определить факторы в развитии которых заложены наиболее крупные резервы улучшения изучаемого показателя).

Для определения доли вклада анализируемого фактора в суммарное влияние всех факторов вычисляют∆і - коэффициентпо формуле:

і = βіrі/R²

 

С помощью ∆і – коэффициентов можно определиться фактор, развитием которого можно обеспечить наибольшую долю прироста регрессанда у.

Таким образом на основании частных коэффициентов эластичности Э yxji - , ∆і - коэффициентов можно судить о резервах роста исследуемого показателя у (регрессанда у ) которые заложены в том или ином факторе xi.

 

Предыдущая статья:Ты регрессии и корреляции незначимы.. (Эконометрия). Следующая статья:ПРОСТРАНСТВЕННАЯ КОРРЕЛЯЦИЯ ВОЗМУЩЕНИЙ (Гетероскедастичность остатков).. (Эконометрия).
page speed (0.0219 sec, direct)