Всего на сайте:
248 тыс. 773 статей

Главная | Физика

Механической системы  Просмотрен 291

Рассмотрим механическую систему, состоящую из материальных точек. Выберем произвольную точку системы. На нее действуют внешние и внутренние силы. Равнодействующие этих сил и (рис. 3.2).

Второй закон Ньютона для всех точек системы записывается в следующем виде: . Учитывая свойство внутренних сил (3.6), получим дифференциальное уравнение движения механической системы в векторной форме:

или . (3.11)

В проекциях на оси координат это уравнение будет иметь вид

, , . (3.12)

 

Теорема о движении центра масс.Дважды продифференцировав по времени уравнение (3.10), находим

или .

Учитывая (3.11), получим

. (3.13)

Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил. По внешнему виду это уравнение напоминает уравнение движения точки. Отличие состоит в том, что материальной точкой центр масс не является. Поэтому теорема о движении центра масс системы формулируется так: центр масс механической системы движется как материальная точка, к которой приложены действующие на систему все внешние силы, а масса точки равна массе всей системы.

Из уравнения (3.13) следует, что движение центра масс возможно только при наличии внешних сил, внутренние же силы не могут изменить положения центра масс. Внутренние силы иногда являются причиной появления внешних сил. Например, внутренняя сила, приводящая в движение ведущее колесо автомобиля, вызывает действие на колесо внешней силы сцепления с дорогой, которая «толкает» автомобиль. Если дорогу принять за абсолютно гладкую плоскость, то сила сцепления равна нулю, и колесо будет двигаться таким образом, что его центр масс останется неподвижным (явление пробуксовки).

Отметим, что уравнение (3.13) является также дифференциальным уравнением поступательного движения твердого тела. Действительно, при поступательном движении ускорения всех точек в каждый момент времени одинаковы и, следовательно, равны ускорению центра масс тела, которое определяется теоремой о движении центра масс.

Рассмотрим частные случаи.

а) Пусть сумма внешних сил, действующих на систему, равна нулю: Тогда из уравнения (3.13) следует, что и . Следовательно,при отсутствии внешних сил центр масс системы движется прямолинейно и равномерно.

б) Если при отсутствии внешних сил в начальный момент времени центр масс был в покое, то он и останется в покое:

, .

Предыдущая статья:Центр масс системы Следующая статья:Моменты инерции
page speed (0.015 sec, direct)