Всего на сайте:
210 тыс. 306 статей

Главная | Биология, Зоология, Анатомия

Роль радикальных процессов. Свободные формы кислорода  Просмотрен 42

Методические указания для студентов

по теме «Роль радикальных процессов. Свободные формы кислорода.

Пероксидное окисление липидов биологических мембран.

Ферментативные и неферментативные ингибиторы окисления»

Цель занятия:Сформировать у студентов представления о радикальных процессах. Показать образование свободных форм кислорода в условиях организма. Продемонстрировать механизм процесса пероксидного окисления липидов биологических мембран. Познакомить с игибиторами процесса пероксидного окисления ферментативной и неферментативной природы.

Значение изучения темы

Важным аспектом проблемы реакций окисления в организме человека являются процессы пероксидного окисления липидов (ПОЛ) биологических мембран. Эти процессы в норме протекают в организме, обеспечивая синтез ряда биологически важных соединений - биорегуляторов (простагландинов, лейкотриенов, тромбоксанов и др.). Интенсификация ПОЛ приобретает патогенетическое значение, поскольку может привести к нарушению целостности биологических мембран, к массовой гибели клеток. В связи с этим необходимо представлять способы коррекции патологических состояний, вызванных интенсификацией ПОЛ.

I. Теоретические вопросы

1. Значение протекания радикальных в организме.

2. Механизм зарождения активных форм кислорода в условиях организма.

3. Процессы пероксидного окисления липидов (ПОЛ) биологических мембран. Схема ПОЛ (инициирование, рост цепей, продолжение цепей, вырожденное разветвление, реакции обрыва цепей). Виды радикалов: пероксидный, алкильный, алкоксильный.

4. Основные представители ферментативных и неферментативных (антиоксидантных) систем организма, механизм их функционирования.

5. Биоантиоксиданты как ловушки алкильных (хиноны, каротиноиды) или пероксидных радикалов (a-токоферол, кверцетин и др. фенолы).

II. Обучающие упражнения

Задание 1. Приведите механизм зарождения активных форм кислорода

В активном центре гемоглобина в результате переноса электрона от катиона железа к кислороду образуются супероксид-ион радикалы

Fe2+ - e ¾®Fe3+, О2 + е ¾¾¾® О2·

При диспропорционировании супероксид-иона образуется пероксид водорода.

О2 · + О2 · + 2 Н+ ¾¾® Н2О2 + О2

При реакции супероксид-иона и пероксидом водорода образуется гидроксил-радикал Н2О2 + О2 · ¾¾® 2ОН· + О2

В реакции супероксид-иона с гидроксил-радикалом образуется синглентный кислород:

ОН· + О2 ·¾¾® *О2(синглентный) + ОН- Образование высокоактивного ОН· радикала происходиттакже по реакции Фентона:H2O2 + Fe2+¾® Fe3++ OH- + ОН·

Задание 2. Напишите схему реакции пероксидного окисления на примере линолевой кислоты.

Ответ. В молекулах фосфолипидов связи С-Н, расположенные между двумя p-связями ( в a-положении к ним), атакуются гидроксильными или пероксильными радикалами. Рассмотрим этот процесс на примере линоленовой кислоты:

В результате образуются новые радикалы, существующие в двух мезомерных формах:

 

Радикал стабилизируется за счет делокализации электронной плотности в сопряженной системе: СН3-(СН2)4-СН. . . СН. . . СН. . . СН. . .СН-(СН2)7-СООН

Схематично описанный выше процесс представляется как

RH + OH· ¾® H2O + R· инициирование (0)

Таким образом, инициируется процесс неферментативного окисления липидов биологических мембран.

Образующийся алкильный радикал присоединяет молекулу кислорода (за время 10-6сек) и превращается в очень активный пероксидный (пероксильный) радикал:

R·+ O2 ¾® RО2· рост цепей (1)

Пероксидный радикал RО2· взаимодействует с соседними углеводородными фрагментами молекулы фосфолипидов, что приводит к образованию гидропероксидов (RООН) и новому алкильному радикалу R·, вновь присоединяющему молекулу О2 согласно реакции 1.

RО2· + RH ¾® RООH + R·продолжение цепей (2)

Гидропероксиды способны разрушаться с разрывом О-О связей, что приводит к вторичному иницированию и, как следствие, ускорению окисления:

RООH ¾® RО· + ОН· вырожденное разветвление (3)

Последняя реакция крайне нежелательна для организма. Поэтому существуют ферментативные антиоксидантные системы, регулирующие в организме концентрацию активных кислородсодержащих ионов и радикалов.

Свободные радикалы взаимодействуют между собой, обрывая цепи окисления в соответствии с элементарными реакциями :

RO2·+ RO2· ¾® молекулярные продукты

RO· + RO· ¾® молекулярные продукты

R· + R· ¾¾® молекулярные продукты

Задание 3. Покажите механизм действия ферментативной и неферментативной (антиоксидантной) системы.

Ответ.Ферменты каталаза и глутатионпероксидаза защищают аэробные клетки от окисления, предотвращая возможность радикального разрушения пероксидов. Субстратом для каталазы преимущественно служит пероксид водорода.

2 Н2О2 ¾¾® 2Н2О + О2

В состав простетической группы каталазы входит гемовое железо, в активном центре происходит окисление (Fe2+ - e ¾® Fe3+).

Глутатионпероксидаза вместе с глутатионом разрушают пероксид водорода и гидропероксиды, защищая клетки от повреждающего действия радикалов, образующихся при гомолитическом разрыве связей RО-ОH.

Глутатион представляет собой трипептид, образованный глутаминовой кислотой, цистеином и глицином :

 

Реакционоспособной группой глутатиона(R-SH)является тиольная группа. Глутатион взаимодействует с пероксидом водорода и гидропероксидами липидов:

2 R-SH + H2O2 ¾® 2 H2O + R-S-S-R

2 R-SH + R1OOH ¾® H2O +R1OH + R-S-S-R

Окисленный глутатион способен восстанавливаться:

R-S-S-R + 2H+ + 2 e 2 R-S-H

Активный центр глутатионпероксидазы содержит остаток селеноцистеина, в котором атом серы цистеина заменен на атом селена:

Полагают, что действие глутатионовой ферментной системы может быть описано совокупностью реакций:

R-Se-H +H2O2 ¾¾® R-Se-OH + H2O(I)

R-Se-OH + 2 R-S-H ¾¾® R-Se-H + R-S-S-R + H2O(II)

R-S-S-R + НАДФ-Н ¾¾® 2 R-S-H + НАДФ+(III)

Задание 4.Показать механизм действия антиоксидантов

Ответ.В присутствии относительно низких концентраций ингибиторов фенольного типа (IпН) (10-6 - 10-3 моль/л) обрыв цепей происходит на молекулах антиоксидантов согласно реакции:

IпН +RO2·¾¾¾¾®ROOH + Iп· (обрыв цепей) (VII)

Радикал ингибитора(Iп·)обычно неактивен и не участвует в продолжении цепей, в связи с чем антиоксидант выполняет роль ловушки свободных радикалов и способствует значительному торможению окисления.

формула основного липидного антиоксиданта - a-токоферола:

 

В последние годы антиоксиданты применяются в клинической практике (антиоксидантотерапия).

Предыдущая статья:Какие из приведенных оснований проявляют амфотерные свойства Следующая статья:III. Задания для самостоятельной работы
page speed (0.0097 sec, direct)