Всего на сайте:
183 тыс. 477 статей

Главная | Статистика

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 1 страница  Просмотрен 93

Дубров А.М.

Д79 Моделирование рисковых ситуации в экономике и биз­несе: Учеб. пособие/А.М. Дубров, Б.А. Лагоша, Е.Ю. Хрусталев; Под ред. Б.А. Лагоши.— М.: Финансы и статисти­ка, 2000.— 176 с.: ил. ISBN 5-279-02068-0.

Рассматриваются подходы к учету факторов неопределенности и риска в экономической практике, а также математические модели, используемые для этих целей. Анализируются ситуации, возникающие в условиях неопределен­ности и недостатка информации при принятии управленческих решений. Со­держание иллюстрируется прикладными задачами с решениями.

Для студентов, обучающихся по специальностям «Статистика», «Мате­матические методы и исследование операций в экономике», «Информацион­ные системы в экономике» и другим экономическим специальностям. Для ас­пирантов, преподавателей, а также для предпринимателей, организующих свой бизнес.

Д 2404000000-031 136 – 98 УДК 330.105

010(01)-2000 ББК 65.290-2,73

ISBN 5-279-02068-0 © А.М. Дубров, Б.А. Лагоша

Е.Ю. Хрусталев. 1999

ОГЛАВЛЕНИЕ

 

ПРЕДИСЛОВИЕ................................................ 3

Глава 1 РИСК И ЕГО ИЗМЕРЕНИЕ.......................................... 4

1.1. РИСК И ПРИБЫЛЬ............................... 4

1.2. МЕРЫ РИСКА....................................... 6

Глава 2 СТРАТЕГИЧЕСКИЕ ИГРЫ.......................................... 8

2.1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ СТРАТЕГИЧЕСКИХ ИГР............................ 8

2.2. СМЕШАННЫЕ СТРАТЕГИИ....................................... 12

2.3. РЕШЕНИЕ ЗАДАЧ В СМЕШАННЫХ СТРАТЕГИЯХ (ЧАСТНЫЙ СЛУЧАЙ).......................... 13

2.4. МАЖОРИРОВАНИЕ (ДОМИНИРОВАНИЕ) СТРАТЕГИЙ............................... 16

Задачи для самостоятельного решения...................................... 17

Глава 3 ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ И РИСКА (ИГРЫ С ПРИРОДОЙ)............ 18

3.1. ПОНЯТИЕ ИГРЫ С ПРИРОДОЙ.................................. 18

3.2. ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ ПОЛНОЙ НЕОПРЕДЕЛЕННОСТИ............................. 20

3.3. ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ РИСКА.................... 22

3.4. ВЫБОР РЕШЕНИЙ С ПОМОЩЬЮ ДЕРЕВА РЕШЕНИЙ (ПОЗИЦИОННЫЕ ИГРЫ)..............

23

3.4.1. ПРИНЯТИЕ РЕШЕНИЙ С ПРИМЕНЕНИЕМ ДЕРЕВА РЕШЕНИЙ....................... 23

3.4.2. АНАЛИЗ И РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ ДЕРЕВА РЕШЕНИЙ................... 24

3.4.3. ОЖИДАЕМАЯ ЦЕННОСТЬ ТОЧНОЙ ИНФОРМАЦИИ............................ 27

3.5. ЗАДАЧИ С РЕШЕНИЯМИ.............................. 27

Глава 4 ФУНКЦИЯ ПОЛЕЗНОСТИ НЕЙМАНА - МОРГЕНШТЕРНА..................... 33

4.1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И АКСИОМЫ......................... 33

4.2. ИЗМЕРЕНИЕ ОТНОШЕНИЯ К РИСКУ................................... 36

4.3. СТРАХОВАНИЕ ОТ РИСКА......................................... 38

Глава 5 ФИНАНСОВЫЕ РЕШЕНИЯ В УСЛОВИЯХ РИСКА....................... 42

5.1. ДИНАМИЧЕСКИЕ МОДЕЛИ ПЛАНИРОВАНИЯ ФИНАНСОВ..................... 42

5.2. ОЦЕНКА ТЕКУЩЕЙ СТОИМОСТИ ФИРМЫ........................ 45

5.2.1. ЧИСТАЯ ПРИВЕДЕННАЯ СТОИМОСТЬ (БЕЗРИСКОВАЯ СИТУАЦИЯ)........................ 45

5.2.2. КОЭФФИЦИЕНТЫ ДИСКОНТИРОВАНИЯ ДЛЯ РИСКОВАННОГО ПРОЕКТА............ 47

5.3. ОЦЕНКА ПЕРСПЕКТИВНОГО ПРОЕКТА.............................. 48

5.4. АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ПРИНЯТИЯ ПРОЕКТА.................................. 51

Глава 6 СТАТИСТИЧЕСКИЕ ИГРЫ...................................... 53

6.1. ОБЩИЕ СВЕДЕНИЯ........................................ 53

6.2. СВОЙСТВА СТАТИСТИЧЕСКИХ ИГР.................................... 54

6.2.1. ВЫБОР ФУНКЦИЙ РЕШЕНИЯ.......................................... 57

6.2.2. МАКРОЭКОНОМИЧЕСКИЕ РЕШЕНИЯ......................... 60

Глава 7 ИНВЕСТИЦИОННЫЕ РЕШЕНИЯ......................................... 62

7.1.

ВЫБОР ОПТИМАЛЬНОГО ВАРИАНТА КАПИТАЛОВЛОЖЕНИЙ ПРИ СТРОИТЕЛЬСТВЕ ЭЛЕКТРОСТАНЦИЙ. 62

7.2. ИНВЕСТИЦИИ В РАЗРАБОТКУ ПОЛЕЗНЫХ ИСКОПАЕМЫХ..................... 63

Глава 8 ЗАДАЧИ ИЗ РАЗНЫХ ОБЛАСТЕЙ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ......................... 65

8.1. ПРОЕКТИРОВАНИЕ МАРШРУТОВ ГОРОДСКОГО ТРАНСПОРТА........................... 65

8.2. ПРИНЯТИЕ РЕШЕНИЙ В СЕЛЬСКОМ ХОЗЯЙСТВЕ........................ 68

8.3. СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ПАРТИИ ГОТОВЫХ ИЗДЕЛИЙ И ВЕРОЯТНОСТЬ ПЕРЕБОЕВ ПРОИЗВОДСТВА 70

8.4. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО ЗАПАСА ПРОДУКЦИИ ТОРГОВОЙ ФИРМЫ НА ОСНОВЕ СТАТИСТИЧЕСКИХ ДАННЫХ............................................. 75

ПРИЛОЖЕНИЕ............................................... 78

СВЯЗЬ МАТРИЧНЫХ ИГР С ЛИНЕЙНЫМ ПРОГРАММИРОВАНИЕМ (ОСНОВНАЯ ТЕОРЕМА ТЕОРИИ ИГР). ПРИМЕР РЕШЕНИЯ ЗАДАЧИ............................................ 78

КРАТКИЙ СЛОВАРЬ ТЕРМИНОВ......................................... 82

ЛИТЕРАТУРА................................................. 83

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ................................... 84

 

ПРЕДИСЛОВИЕ

В предлагаемой читателю книге основное внимание уделяет­ся методам решения задач, возникающих в рисковых ситуациях. В Словаре русского языка С. И. Ожегова термин «риск» опреде­ляется как «возможная опасность» и «действие наудачу в надеж­де на счастливый исход». Следовательно, риск предполагает возможность наступления неблагоприятного события. Для лю­бого бизнеса важно не избежать риск вообще, а предвидеть его и принять наилучшее решение относительно определенного кри­терия, отражающего основной интерес предпринимателя.

Теоретической основой и практическим инструментарием анализа и прогнозирования решений в экономике и бизнесе яв­ляются экономико-математические модели и проводимые по ним расчеты.

В настоящем учебном пособии при рассмотрении моделей принятия решений в условиях неопределенности и риска даются практические рекомендации по применению этих моделей в типовых ситуациях. В данном случае основная трудность заклю­чается не в выполнении расчетов, а в построении самих моде­лей, адекватных реальной обстановке. В силу этого читателю предлагается достаточно большое число примеров построения таких моделей. Разнообразные реальные экономические ситуа­ции - потенциальные объекты моделирования - описаны в зада­чах. Некоторые из них даются с решениями, другие - предназ­начены для самостоятельной работы.

В качестве математических средств принятия решений в ус­ловиях неопределенности и риска используются: теория страте­гических игр, теория вероятностей, математическая статистика, теория статистических решений, математическое программиро­вание, теория полезности Неймана-Моргенштерна.

Книга состоит из восьми глав. Главы 1-5 отражают достаточ­но элементарный подход к исследуемой области, главы 6 - 8 -более углубленный.

Необходимый для первых пяти глав математический аппарат не выходит за пределы младших курсов экономических вузов. Здесь приводятся задачи с решениями, а в гл. 1-4 - задачи для самостоятельного выполнения. Соответственно данный матери­ал ориентирован на студентов младших курсов обучения и всех желающих получить первоначальное представление о расчете в бизнесе.

Последние три главы, как мы упоминали, дают более углуб­ленное представление об аппарате моделирования рисковых си­туаций. Прежде всего это относится к статистическим играм с природой. Изложение материала сопровождается многими при­мерами с решениями, доведенными до конкретных цифр и реко­мендаций. Эта часть книги ориентирована на студентов старших курсов, аспирантов и преподавателей, может использоваться и практиками.

Различная целевая ориентация учебного материала объясня­ет, почему в конце каждой из глав 1 - 4 даются вопросы для самопроверки и задачи для самостоятельного решения, а в дру­гих главах они отсутствуют, но приводится большое количество задач повышенной трудности с решениями.

Глава 1 «Риск и его измерение» включает общее описание прибыли и риска от реализации проектов, методы оценки эф­фективности и рисковости проектов, связь этих показателей со склонностью к риску лица, принимающего решение.

Глава 2 «Стратегические игры» содержит описание игр двух лиц с противоположными интересами. Участники игры осознан­но противодействуют друг другу, что соответствует, например, конкуренции фирм на одном рынке. Фирмы пытаются реализо­вать свои интересы и помешать в этом конкурентам. Рассматри­вается простейший графический метод решения матричных игр и указывается на их связь с линейным программированием в общем случае при произвольном виде платежной матрицы т х п. Это универсальный метод решения игр двух лиц с нулевой сум­мой, позволяющий применить известный математический аппа­рат линейного программирования и соответствующее програм­мное обеспечение. Доказательство связанной с этим основной теоремы теории игр и пример ее применения вынесены в прило­жение.

Отличие игр, описанных в главе 3 «Принятие решений в условиях неопределенности и риска (игры с природой)», от стра­тегических игр состоит в том, что в них один из участников противодействует сопернику неосознанно. В экономике многие решения зависят от конъюнктуры, складывающейся из многих факторов (курса валют, политики правительства, уровня инфля­ции и т.д.), которые, взаимодействуя друг с другом, влияют на всех участников «игры в экономику» не персонально, а единооб­разно.

Принятие решений в условиях неопределенности и риска получает развитие в виде выбора решений с помощью дерева решений (позиционные игры). Этот метод учитывает, что дей­ствия игроков, испытывающих противостояние ряда независи­мых явлений, могут быть выстроены в некоторую последователь­ность. Например, геологическая разведка недр может закончить­ся неудачей (полезных ископаемых не найдено). Если этот этап пройден успешно, то дальнейший риск связан с правильной оценкой мощности открытого месторождения. Можно построить перерабатывающий завод, который будет простаивать, а можно продать месторождение по лицензии и оказаться в проигрыше, если запасы ископаемых превысили ожидаемые значения.

Теория полезности Неймана-Моргенштерна, представленная в гл. 4, учитывает отношение лица, принимающего решения, к риску.

Глава 5 «Финансовые решения в условиях риска» отражает некоторые аспекты банковской и финансовой деятельности, ко­торые в рамках рыночной экономики приобретают особо риско­вый характер и поэтому требуют более детального исследова­ния. Приведены две динамические модели планирования финан­сов в форме задачи линейного программирования с решениями. Рассмотрена методика оценки стоимости фирмы на примере неопределенно долго «живущей» акционерной фирмы. Вырабо­танный при этом критерий живучести сравнивается с альтерна­тивными популярными, но могущими оказаться неточными кри­териями.

Глава 6 «Статистические игры» дает углубленное изложе­ние теории игр с природой. Используется математический ап­парат теории множеств, байесовских функций, условных веро­ятностей и др. Теория иллюстрируется множеством примеров с решениями.

Глава 7 «Инвестиционные решения» опирается на теорию предыдущих глав. Однако все рассматриваемые прикладные за­дачи в том или ином плане связаны с моделированием принятия инвестиционных решений. Для практиков, по-видимому, эта гла­ва должна представлять наибольший интерес.

В главе 8 «Задачи из разных областей хозяйственной деятель­ности» разбираются следующие задачи: возникающие на транс­порте при планировании новых пассажирских маршрутов, зада­чи обоснования выбора участков земли под посадку картофеля в зависимости от погодных условий, статистического контроля партии готовых изделий и оценки вероятности перебоев на про­изводстве, определения оптимального запаса продукции торго­вой фирмы на основе статистических данных.

Краткий словарь терминов раскрывает основные понятия теории вероятностей, математической статистики и линейного программирования, встречающиеся в данном учебном пособии.

В подготовке глав 4 и 5 принимал участие А. Б. Аронович.

Авторы благодарят доктора технических наук, профессора В.А. Бывшева и доктора экономических наук, профессора А.В. Мищенко за полезные замечания, способствовавшие улуч­шению содержания учебного пособия.

Глава 1 РИСК И ЕГО ИЗМЕРЕНИЕ

1.1. РИСК И ПРИБЫЛЬ

Любая сфера человеческой деятельности, в особенности эко­номика или бизнес, связана с принятием решений в условиях неполноты информации. Источники неопределенности могут быть самые разнообразные: нестабильность экономической и/или по­литической ситуации, неопределенность действий партнеров по бизнесу, случайные факторы, т.е. большое число обстоятельств, учесть которые не представляется возможным (например, погод­ные условия, неопределенность спроса на товары, неабсолютная надежность процессов производства, неточность информации и др.). Экономические решения с учетом перечисленных и множе­ства других неопределенных факторов принимаются в рамках так называемой теории принятия решений — аналитического подхода к выбору наилучшего действия (альтернативы) или последователь­ности действий. В зависимости от степени определенности воз­можных исходов или последствий различных действий, с которы­ми сталкивается лицо, принимающее решение (ЛПР), в теории принятия решений рассматриваются три типа моделей:

• выбор решений в условиях определенности, если относи­тельно каждого действия известно, что оно неизменно приводит к некоторому конкретному исходу;

• выбор решения при риске, если каждое действие приводит к одному из множества возможных частных исходов, причем каж­дый исход имеет вычисляемую или экспортно оцениваемую веро­ятность появления. Предполагается, что ЛПР эти вероятности известны или их можно определить путем экспертных оценок;

• выбор решений при неопределенности, когда то или иное действие или несколько действий имеют своим следствием мно­жество частных исходов, но их вероятности совершенно не из­вестны или не имеют смысла.

Проблема риска и прибыли - одна из ключевых в экономи­ческой деятельности, в частности в управлении производством и финансами. Под риском принято понимать вероятность (угрозу) потери лицом или организацией части своих ресурсов, недопо­лучения доходов или появления дополнительных расходов в результате осуществления определенной производственной и финансовой политики.

Различают следующие виды рисков:

производственный, связанный с возможностью невыполне­ния фирмой своих обязательств перед заказчиком;

кредитный, обусловленный возможностью невыполнения фирмой своих финансовых обязательств перед инвестором;

процентный, возникающий вследствие непредвиденного изменения процентных ставок;

риск ликвидности, обусловленный неожиданным изменени­ем кредитных и депозитных потоков;

инвестиционный, вызванный возможным обесцениванием инвестиционно-финансового портфеля, состоящего из собствен­ных и приобретенных ценных бумаг;

рыночный, связанный с вероятным колебанием рыночных процентных ставок как собственной национальной денежной единицы, так и зарубежных курсов валют.

Риск подразделяется на динамический и статический. Дина­мический риск связан с возникновением непредвиденных изме­нений стоимости основного капитала вследствие принятия уп­равленческих решений, а также рыночных или политических обстоятельств. Такие изменения могут привести как к потерям, так и к дополнительным доходам. Статический риск обуслов­лен возможностью потерь реальных активов вследствие нанесе­ния ущерба собственности и потерь дохода из-за недееспособно­сти организации.

Все участники проекта заинтересованы в том, чтобы не до­пустить полного провала проекта или хотя бы избежать убыт­ка. В условиях нестабильной, быстро меняющейся ситуации необходимо учитывать все возможные последствия от действий конкурентов, а также изменения конъюнктуры рынка. Поэто­му основное назначение анализа риска состоит в том, чтобы обеспечить партнеров информацией, необходимой для приня­тия решений о целесообразности участия в некотором проек­те, и предусмотреть меры по защите от возможных финансо­вых потерь.

При анализе риска могут использоваться следующие условия или предположения:

• потери от риска не зависят друг от друга;

• потери по одному из некоторого перечня рисков не обяза­тельно увеличивают вероятность потерь по другим;

• максимально возможный ущерб не должен превышать фи­нансовых возможностей участников проекта.

Все факторы, влияющие на рост степени риска в проекте, можно условно разделить на объективные и субъективные. Объек­тивные факторы непосредственно не зависят от самой фирмы: это инфляция, конкуренция, анархия, политические и экономичес­кие кризисы, экология, налоги и т.д. Субъективные факторы непосредственно характеризуют данную фирму: это производствен­ный потенциал, техническое оснащение, уровень производитель­ности труда, проводимая финансовая, техническая и производствен­ная политика, в частности выбор типа контракта между инвесто­ром и заказчиком. Последний фактор играет особо важную роль для фирмы, поскольку от типа контракта зависят степень риска и величина вознаграждения по окончании проекта.

Исследование риска целесообразно проводить в следующей последовательности:

• выявление объективных и субъективных факторов, влияю­щих на конкретный вид риска;

• анализ выявленных факторов;

• оценка конкретного вида риска с финансовых позиций, определяющая либо финансовую состоятельность проекта, либо его экономическую целесообразность;

• установка допустимого уровня риска;

• анализ отдельных операций по выбранному уровню риска;

• разработка мероприятий по снижению риска.

Финансирование проекта, являясь одним из наиболее важных условий эффективности его выполнения, должно быть нацелено на обеспечение потока инвестиций для планомерного выполнения проекта, на снижение капитальных затрат и риска проекта за счет оптимальной структуры инвестиции и получения налого­вых преимуществ. В плане финансирования проекта должны учитываться следующие виды рисков:

• риск нежизнеспособности проекта;

• налоговый риск;

• риск неуплаты задолженностей;

• риск незавершения строительства.

Высокая степень риска проекта приводит к необходимости поиска путей искусственного снижения его (риска) возможных последствий на состояние фирмы.

В существующей практике применяются главным образом четыре основных способа управления риском: распределение риска между всеми участниками проекта (передача части риска соисполнителям), страхование, резервирование средств на покры­тие непредвиденных расходов и диверсификация.

Анализ рисков подразделяется на два взаимно дополняющих друг друга вида: качественный, главная задача которого состоит в определении факторов риска и обстоятельств, приводящих к рисковым ситуациям, и количественный, позволяющий вычис­лить размеры отдельных рисков и риска проекта в целом.

1.2. МЕРЫ РИСКА

Наиболее распространена точка зрения, согласно которой мерой риска некоторого коммерческого (финансового) решения или операции следует считать среднее квадратичное отклонение (положительный квадратный корень из дисперсии) значения показателя эффективности этого решения или операции. Действи­тельно, поскольку риск обусловлен недетерминированностью исхода решения (операции), то, чем меньше разброс (дисперсия) результата решения, тем более он предсказуем, т.е. меньше риск. Если вариация (дисперсия) результата равна нулю, риск полно­стью отсутствует. Например, в условиях стабильной экономики операции с государственными ценными бумагами считаются безрисковыми.

Чаще всего показателем эффективности финансового реше­ния (операции) служит прибыль.

Рассмотрим в качестве иллюстрации выбор некоторым ли­цом одного из двух вариантов инвестиций в условиях риска. Пусть имеются два проекта А и В, в которые указанное лицо может вложить средства.

Проект А в определенный момент в будущем обеспечивает случайную величину прибыли. Предположим, что ее среднее ожидаемое значение, математическое ожидание, рав­но тА с дисперсией . Для проекта В эти числовые характери­стики прибыли как случайной величины предполагаются равны­ми соответственно mB и . Средние квадратичные отклонения равны соответственно SA и SB.

Подробнее описание числовых характеристик дано, напри­мер, в [2, гл.4] и [7, гл. 14].

Возможны следующие случаи:

a) тA = mB, SA < SB, следует выбрать проект А;

b) тA > mB, SA < SB, следуетвыбрать проект А;

c) тA > mB, SA = SB, следует выбрать проект А;

d) тA > mB, SA > SB;

e) тA < mB, SA < SB.

В последних двух случаях решение о выборе проекта А или В зависит от отношения к риску ЛПР. В частности, в случае d проект А обеспечивает более высокую среднюю прибыль, одна­ко он и более рискован. Выбор при этом определяется тем, какой дополнительной величиной средней прибыли компенсируется для ЛПР заданное увеличение риска. В случае е для проекта А риск меньший, но и ожидаемая прибыль меньшая. Субъективное от­ношение к риску учитывается в теории Неймана-Моргенштерна и рассматривается в гл. 4.

Пример. Пусть имеются два инвестиционных проекта. Пер­вый с вероятностью 0,6 обеспечивает прибыль 15 млн руб., одна­ко с вероятностью 0,4 можно потерять 5,5 млн руб. Для второго проекта с вероятностью 0,8 можно получить прибыль 10 млн руб. и с вероятностью 0,2 потерять 6 млн руб. Какой проект выбрать?

Решение. Оба проекта имеют одинаковую среднюю при­быльность, равную 6,8 млн руб. (0,6*15 + +0,4(-5,5)=0,8*10 + 0,2(-6) = 6,8). Однако среднее квадратичное отклонение прибыли для первого проекта равно 10,04 млн руб. ([0,6(15 - 6,8)2 + 0,4(-5,5 – 6,8)2]1/2 = 10,04), а для второго - 6,4 млн руб. ([0,8 (10 - 6,8)2 + 0,2(-6 – 6,8)2]1/2 = 6,4), поэтому более предпочтите­лен второй проект.

Хотя среднее квадратичное отклонение эффективности реше­ния и используется часто в качестве меры риска, оно не совсем точно отражает реальность. Возможны ситуации, при которых варианты обеспечивают приблизительно одинаковую среднюю прибыль и имеют одинаковые средние квадратичные отклоне­ния прибыли, однако не являются в равной мере рискованными. Действительно, если под риском понимать риск разорения, то величина риска должна зависеть от величины исходного капита­ла ЛПР или фирмы, которую он представляет. Теория Неймана-Моргенштерна это обстоятельство учитывает. Из публикаций, посвященных методам измерения и управления рисками, укажем на [8,9,10,16,18,20].

На рис. 1.1 рассмотрен случай выбора из более чем двух вариантов инвестиций. Характеристики вариантов показаны точ­ками на плоскости (т, S), где т - средняя прибыль, получаемая в результате инвестиции, а S- среднее квадратичное отклонение прибыли.

Рис. 1.1. Варианты выбора инвестиций

Из рис. 1.1 видно, что среди вариантов А, В и С наиболее предпочтителен А. Из вариантов В, D и Н следовало бы выбрать Н. Вариант Н лучше вариантов С и F. Однако сравнительная предпочтительность, например, вариантов А, D, F и G зависит от склонности ЛПР к риску.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Что такое риск?

2. Какие бывают виды рисков?

3. Какой параметр наиболее часто используется в качестве меры риска?

4. Акционерному обществу предлагаются два рисковых проекта:

Проект I Проект 2

Вероятность события .................. 0,2 0,6 0,2 0,4 0,2 0,4

Наличные поступления, млн руб. ........... 40 50 60 0 50 100

Учитывая, что фирма имеет фиксированные платежи по долгам 80 млн руб., какой проект должны выбрать акционеры и почему?

Глава 2 СТРАТЕГИЧЕСКИЕ ИГРЫ

2.1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ СТРАТЕГИЧЕСКИХ ИГР

На практике часто появляется необходимость согласования дей­ствии фирм, объединении, министерств и других участников проек­тов в случаях, когда их интересы не совпадают. В таких ситуациях теория игр позволяет найти лучшее решение для поведения участ­ников, обязанных согласовывать действия при столкновении инте­ресов. Теория игр все шире проникает в практику экономических решений и исследований. Ее можно рассматривать как инструмент, помогающий повысить эффективность плановых и управленческих решений. Это имеет большое значение при решении задач в про­мышленности, сельском хозяйстве, на транспорте, в торговле, осо­бенно при заключении договоров с иностранными государствами на любых иерархических уровнях. Так, можно определить научно обоснованные уровни снижения розничных цен и оптимальный уровень товарных запасов, решать задачи экскурсионного обслужи­вания и выбора новых линий городского транспорта, задачу плани­рования порядка организации эксплуатации месторождений полез­ных ископаемых в стране и др. Классической стала задача выбора участков земли под сельскохозяйственные культуры. Метод теории игр можно применять при выборочных обследованиях конечных со-вокупностей, при проверке статистических гипотез.

Предыдущая статья:Работа в информационной базе знаний (самостоятельная работа) Следующая статья:ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 2 страница
page speed (0.0458 sec, direct)