Всего на сайте:
183 тыс. 477 статей

Главная | Математика

Теория вероятностей.  Просмотрен 253

  1. Определение. Дополнительным к событию А называется событие , означающее, что событие А не происходит.
  2. Вероятность того, что деталь находится только в одном ящике, равна 1 страница
  3. Вероятность того, что деталь находится только в одном ящике, равна 2 страница
  4. Вероятность того, что деталь находится только в одном ящике, равна 3 страница
  5. Вероятность того, что деталь находится только в одном ящике, равна 4 страница
  6. Вероятность того, что деталь находится только в одном ящике, равна 5 страница
  7. Определение. процесс функционирования системы массового обслуживания называется случайным процессом.
  8. Ход урока. 1.Организационный момент 2. Проверка домашнего задания 3. Устный счё..
  9. Пределы
  10. ДОПОЛНИТЕЛЬНЫЕ ЗАДАНИЯ. Задание 7.Соедини стрелками объекты природы с соответствующим словом-п..
  11. Определение: Плоскость, проходящая через касательную и главную нормаль к кривой в точке А называется соприкасающейся плоскостью.
  12. Физкультминутка. Задание 3. 1 га = 10 000 м2. 1) 200 000 :10 000 - 20 (штук) — на 1 м2..

КУРС

ВЫСШЕЙ

МАТЕМАТИКИ

 

Краткий конспект лекций

 

ЧАСТЬ 4

 

 

 

Теория вероятностей.

 

Основные понятия.

Определение. Событиемназывается всякий факт, который может произойти или не произойти в результате опыта.

При этом тот или иной результат опыта может быть получен с различной степенью возможности. Т.е. в некоторых случаях можно сказать, что одно событие произойдет практически наверняка, другое практически никогда.

В отношении друг друга события также имеют особенности, т.е. в одном случае событие А может произойти совместно с событием В, в другом – нет.

 

Определение. События называются несовместными, если появление одного из них исключает появление других.

Классическим примером несовместных событий является результат подбрасывания монеты – выпадение лицевой стороны монеты исключает выпадение обратной стороны (в одном и том же опыте).

 

Определение. Полной группой событий называется совокупность всех возможных результатов опыта.

 

Определение. Достоверным событиемназывается событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.

Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.

 

Определение. События называются равновозможными, если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.

В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров.

Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.

 

Исходя из этих общих понятий можно дать определение вероятности.

 

Определение. Вероятностью события А называется математическая оценка возможности появления этого события в результате опыта. Вероятность события А равна отношению числа, благоприятствующих событию А исходов опыта к общему числу попарно несовместных исходов опыта, образующих полную группу событий.

 

Исход опыта является благоприятствующим событию А, если появление в результате опыта этого исхода влечет за собой появление события А.

Очевидно, что вероятность достоверного события равна единице, а вероятность невозможного – равна нулю. Таким образом, значение вероятности любого события – есть положительное число, заключенное между нулем и единицей.

 

Пример. В коробке находится 10 шаров. 3 из них красные, 2 – зеленые, остальные белые. Найти вероятность того, что вынутый наугад шар будет красным, зеленым или белым.

 

Появление красного, зеленого и белого шаров составляют полную группу событий. Обозначим появление красного шара – событие А, появление зеленого – событие В, появление белого – событие С.

Тогда в соответствием с записанными выше формулами получаем:

 

Отметим, что вероятность наступления одного из двух попарно несовместных событий равна сумме вероятностей этих событий.

 

Определение. Относительной частотой события А называется отношение числа опытов, в результате которых произошло событие А к общему числу опытов.

Отличие относительной частоты от вероятности заключается в том, что вероятность вычисляется без непосредственного произведения опытов, а относительная частота – после опыта.

Так в рассмотренном выше примере, если из коробки наугад извлечено 5 шаров и 2 из них оказались красными, то относительная частота появления красного шара равна:

Как видно, эта величина не совпадает с найденной вероятностью.

 

При достаточно большом числе произведенных опытов относительная частота изменяется мало, колеблясь около одного числа. Это число может быть принято за вероятность события.

 

Вообще говоря, классическое определение вероятности – довольно относительное.

Это обусловлено тем, что на практике сложно представить результат опыта в виде совокупности элементарных событий, доказать, что события равновероятные.

К примеру при произведении опыта с подбрасыванием монеты на результат опыта могут влиять такие факторы как несимметричность монеты, влияние ее формы на аэродинамические характеристики полета, атмосферные условия и т.д.

 

Классическое определение вероятности неприменимо к испытаниям с бесконечным числом исходов. Чтобы преодолеть этот недостаток вводится понятие геометрической вероятности, т.е. вероятности попадания точки в какой – либо отрезок или часть плоскости (пространства).

Так если на отрезке длиной L выделен отрезок длины l, то вероятность попадания наугад взятой точки в отрезок l равна отношению l/L.

 

Операции над событиями.

 

Определение. События А и В называются равными, если осуществление события А влечет за собой осуществление события В и наоборот.

 

Определение. Объединениемили суммой событий Аk называется событие A, которое означает появление хотя бы одногоиз событий Аk.

 

Определение. Пересечениемили произведениемсобытий Ak называется событие А, которое заключается в осуществлении всех событий Ak.

 

Определение. Разностью событий А и В называется событие С, которое означает, что происходит событие А, но не происходит событие В.

 

Предыдущая статья:Определение. Поверхностный интеграл называется потоком векторного поля через поверхность D. Следующая статья:Определение. Дополнительным к событию А называется событие , означающее, что событие А не происходит.
page speed (0.0387 sec, direct)