Всего на сайте:
148 тыс. 196 статей

Главная | Охрана труда, БЖД

Поиск технических устройств перехвата информации  Просмотрен 323

  1. Защита речевой информации учреждений и предприятий
  2. Методы и средства защиты информации в технических каналах учреждений и предприятий
  3. Устранение несанкционированного использования диктофона
  4. Отношение дальностей при защите от несанкционированного доступа к информации
  5. Технические проверки предприятий и учреждений
  6. ЗАЩИТА ТЕХНИЧЕСКИХ КАНАЛОВ СВЯЗИ ПРЕДПРИЯТИЙ И УЧРЕЖДЕНИЙ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА К ИНФОРМАЦИИ, Список сокращений
  7. Технические устройства перехвата информации
  8. Поиск с использованием индикаторов электромагнитного поля.
  9. Технико-экономическое обоснование мероприятий по защите от несанкционированного доступа
  10. Защита телефонных линий
  11. Анализ технических каналов учреждений и предприятий по несанкционированному доступу и защите от него
  12. ЗАЩИТА ТЕХНИЧЕСКИХ КАНАЛОВ СВЯЗИ ПРЕДПРИЯТИЙ И УЧРЕЖДЕНИЙ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА К ИНФОРМАЦИИ

 

Поиск и обнаружение закладных устройств может осуществляться визуально, а также с использованием специальной аппаратуры: детекторов диктофонов и видеокамер, индикаторов поля, радиочастотомеров и интерсепторов, сканерных приемников и анализаторов спектра, программно-аппаратных комплексов контроля, нелинейных локаторов, рентгеновских комплексов, обычных тестеров, а также специальной аппаратуры для проверки проводных линий и т.д.

Метод поиска закладных устройств во многом определяется использованием той или иной аппаратуры контроля. К основным методам поиска закладных устройств можно отнести [1–4, 18–20]:

– специальное обследование выделенных помещений;

– поиск радиозакладок с использованием индикаторов поля, радиочастотомеров и интерсепторов;

– поиск радиозакладок с использованием сканерных приемников и анализаторов спектра;

– поиск радиозакладок с использованием программно-аппаратных комплексов контроля;

– поиск портативных звукозаписывающих устройств с использованием детекторов диктофонов (по наличию их побочных электромагнитных излучений генераторов подмагничивания и электродвигателей);

– поиск портативных видеозаписывающих устройств с использованием детекторов видеокамер (по наличию побочных электромагнитных излучений генераторов подмагничивания и электродвигателей видеокамер);

– поиск закладок с использованием нелинейных локаторов;

– поиск закладок с использованием рентгеновских комплексов;

– проверка с использованием ВЧ-пробника (зонда) линий электропитания, радиотрансляции и телефонной связи;

– измерение параметров линий электропитания, телефонных линий связи и т.д.;

– проведение тестового “прозвона” всех телефонных аппаратов, установленных в проверяемом помещении, с контролем (на слух) прохождения всех вызывных сигналов АТС.

Простейшими и наиболее дешевыми обнаружителями радиоизлучений закладных устройств являются индикаторы электромагнитного поля,которые световым или звуковым сигналом сигнализируют о наличии в точке расположения антенны электромагнитного поля с напряженностью выше пороговой (фоновой). Более сложные из них – частотомерыобеспечивают, кроме того, измерение несущей частоты наиболее “сильного” в точке приема сигнала.

Для обнаружения излучений закладных устройств в ближней зоне могут использоваться и специальные приборы, называемые интерсепторами.Интерсептор автоматически настраивается на частоту наиболее мощного сигнала и осуществляет его детектирование. Некоторые интерсепторы позволяют не только производить автоматический или ручной захват радиосигнала, осуществлять его детектирование и прослушивание через динамик, но и определять частоту обнаруженного сигнала и вид модуляции.

Чувствительность обнаружителей поля мала, поэтому они позволяют обнаруживать излучения радиозакладок в непосредственной близости от них.

Существенно лучшую чувствительность имеют специальные (профессиональные) радиоприемники с автоматизированным сканированием радиодиапазона (сканерные приемникиили сканеры).Они обеспечивают поиск в диапазоне частот, перекрывающем частоты почти всех применяемых радиозакладок – от десятков кГц до единиц ГГц. Лучшими возможностями по поиску радиозакладок обладают анализаторы спектра.Кроме перехвата излучений закладных устройств они позволяют анализировать и их характеристики, что немаловажно при обнаружении радиозакладок, использующих для передачи информации сложные виды сигналов.

Возможность сопряжения сканирующих приемников с переносными компьютерами послужило основой для создания автоматизированных комплексов для поиска радиозакладок (так называемых программно-аппаратных комплексов контроля).Кроме программно-аппаратных комплексов, построенных на базе сканирующих приемников и переносных компьютеров, для поиска закладных устройств используются и специально разработанные многофункциональные комплексы.

Специальные комплексы и аппаратура для контроля проводных линийпозволяют проводить измерение параметров (напряжений, токов, сопротивлений и т.п.) телефонных, слаботочных линий и линий электропитания, а также выявлять в них сигналы закладных устройств.

Обнаружители пустотпозволяют обнаруживать возможные места установки закладных устройств в пустотах стен или других деревянных или кирпичных конструкциях.

Большую группу образуют средства обнаружения или локализации закладных устройств по физическим свойствам элементов электрической схемы или конструкции. Такими элементами являются: полупроводниковые приборы, которые применяются в любых закладных устройствах, электропроводящие металлические детали конструкции и т.д. Из этих средств наиболее достоверные результаты обеспечивают средства для обнаружения полупроводниковых элементов по их нелинейным свойствам – нелинейные радиолокаторы.

Принципы работы нелинейных радиолокаторов близки к принципам работы радиолокационных станций, широко применяемых для радиолокационной разведки объектов. Существенное отличие заключается в том, что если приемник радиолокационной станции принимает отраженный от объекта зондирующий сигнал (эхо-сигнал) на частоте излучаемого сигнала, то приемник нелинейного локатора принимает 2 и 3-ю гармоники отраженного сигнала. Появление в отраженном сигнале этих гармоник обусловлено нелинейностью характеристик полупроводников.

Металлоискатели (металлодетекторы)реагируют на наличие в зоне поиска электропроводных материалов, прежде всего металлов, и позволяют обнаруживать корпуса или другие металлические элементы закладки.

Переносные рентгеновские установкиприменяются для просвечивания предметов, назначения которых не удается выявить без их разборки прежде всего тогда, когда она невозможна без разрушения найденного предмета.

Индикаторы электромагнитного поля, радиочастотомеры и интерсепторы. Индикаторы электромагнитного поля(далее индикаторы поля) позволяют обнаруживать излучающие закладные устройства, использующие для передачи информации практически все виды сигналов, включая широкополосные шумоподобные и сигналы с псевдослучайной скачкообразной перестройкой несущей частоты.

Принцип действия приборов основан на интегральном методе измерения уровня электромагнитного поля в точке их расположения [1]. Наведенный в антенне и продетектированный сигнал усиливается, и в случае превышения им установленного порога срабатывает звуковая или световая сигнализация.

Коэффициент усиления в большинстве известных индикаторов поля регулируется с помощью переменного резистора, изменение сопротивления которого обеспечивается регулятором чувствительности на кожухе прибора. Индикаторы оповещают оператора о наличии электромагнитного поля с уровнем напряженности выше некоторого порогового значения, устанавливаемого регулятором чувствительности. Ряд индикаторов поля позволяет определять относительный уровень сигнала по стрелочному, жидкокристаллическому или световому индикаторам. Световые индикаторы, как правило, выполняют в виде линейки из 4 ... 10 светодиодов, каждый последующий из которых загорается при повышении уровня сигнала в соответствии с линейной или логарифмической шкалой.

Некоторые индикаторы поля дополняются специальным блоком, включающим амплитудный детектор (АД), усилитель низкой частоты (УНЧ) и громкоговоритель, что позволяет прослушивать детектированный сигнал. Так как у ряда радиозакладок, использующих частотную модуляцию сигнала, имеется и паразитная амплитудная модуляция сигнала, наличие данного блока позволяет отселектировать сигнал закладки на фоне других радиосигналов при прослушивании через динамик информационного (тестового) акустического сигнала [1, 2 .

Использование в обнаружителе амплитудного детектора, усилителя низкой частоты и динамика позволяет реализовать эффект так называемой акустической “завязки” [1]. Суть акустической “завязки” состоит в следующем.

При подаче продетектированного и усиленного сигнала на громкоговоритель между ним и микрофоном закладки образуется положительная обратная акустическая связь. При приближении индикатора поля к закладке на близкое расстояние возникает режим самовозбуждения низкочастотного усилителя индикатора, аналогичный режиму самовозбуждения в обычных системах звукоусиления, когда микрофон близко подносят к звуковым колонкам. При этом появляется характерный акустический сигнал, похожий на свист, информирующий оператора о наличии вблизи индикатора поля акустической закладки. Чем выше громкость сигнала громкоговорителя, тем на большем расстоянии от закладки наблюдается режим самовозбуждения усилителя. С уменьшением громкости это расстояние уменьшается. Необходимо отметить, что у профессиональных радиозакладок с частотной модуляцией сигнала практически отсутствует паразитная амплитудная модуляция и эффект акустической “завязки” не наблюдается.

Некоторые современные радиочастотные детекторы позволяют осуществлять детектирование амплитудно- и частотно-модулированных сигналов, а также селектировать сигналы в ближней зоне.

В результате дальнейшего развития индикаторов поля созданы широкополосные радиоприемные устройства – интерсепторы.Приборы автоматически настраиваются на частоту наиболее мощного радиосигнала (как правило, уровень этого сигнала на 15 ... 20 дБ превышает все остальные) и осуществляют его детектирование.

Принцип “захвата” частоты радиосигнала с максимальным уровнем и последующим анализом его характеристик микропроцессором положен в основу работы современных портативных радиочастотомеров.Микропроцессор производит запись сигнала во внутреннюю память, цифровую фильтрацию, проверку на стабильность и когерентность

Для обнаружения работающих диктофонов применяются так называемые детекторы диктофонов,которые являются детекторными приемниками магнитного поля.

Принцип действия приборов основан на обнаружении слабого магнитного поля, создаваемого генератором подмагничивания или работающим двигателем диктофона в режиме записи. ЭДС, наводимая этим полем в датчике сигналов (магнитной антенне), усиливается и выделяется из шума специальным блоком обработки сигналов. Превышение уровня принятого сигнала некоторого установленного порогового значения сигнализируется. Во избежание ложных срабатываний порог обнаружения необходимо корректировать практически перед каждым сеансом работы, что является недостатком подобных приборов.

Аналогично детекторам диктофонов работают и детекторы видеокамер.

Сканерные приемники и анализаторы спектра.Для первоначальной записи частотного спектра приемник осуществляет сканирование рабочего диапазона четыре раза подряд в течение 24 с (время скани-рования спектрального диапазона составляет 6 с). Оператор имеет возможность произвести анализ записанных в память сигналов. В последующем приемник переводится в автоматический режим работы. При каждом сканировании производится сравнение обнаруженных и записанных в “долговременную” память сигналов. При выявлении нового сигнала срабатывает сигнализация, и этот сигнал записывается в блок памяти новых сигналов для последующей проверки. После анализа новых сигналов их можно записать в долговременную память в режиме обновления спектра (добавления новых сигналов).

Портативные анализаторы спектрав отличие от сканерных приемников при сравнительно небольших габаритах и массе (от 9,5 до 20 кг) позволяют не только принимать сигналы в диапазоне частот от 30 Гц ... 9 кГц до 1,8...40 ГГц, но и анализировать их тонкую структуру. Например, цифровые анализаторы спектра НР8561Е фирмы "Hewlett Packard" позволяют измерять параметры сигнала в диапазоне частот от 30 Гц до 6,5 ГГц, а анализаторы спектра 2784 фирмы "Tektronix" – в диапазоне частот от 9 кГц до 40 ГГц [1, 2 .

Точность измерения параметров сигналов очень высокая. Погрешность измерения частоты сигнала составляет 15 ... 210 Гц для частоты 1 ГГц и 1 ... 1,2 кГц – для частоты 10 ГГц, а погрешность измерения амплитуды сигнала – 1 ... 3 дБ. Почти все анализаторы спектра имеют встроенные AM/FM детекторы.

Чувствительность портативных анализаторов спектра составляет минус 125 ... 145 дБ (относительно 1 мВт) [1].

Селективные микровольтметрыпозволяют принимать сигналы на частотах до 1 ... 2 ГГц, а также измерять их амплитуду с погрешностью 1 дБ и частоту с погрешностью от 10 до 100 Гц. Ширина полосы пропускания при этом, как правило, не превышает 120 ... 250 кГц. Чувствительность селективных микровольтметров составляет 0,25 ... 0,89 мкВ.

Для выявления радиозакладок могут использоваться специальные анализаторы спектра. Эти приборы предназначены для поиска, измерения и анализа спектра радио- и телевизионных сигналов.

Они позволяют контролировать одновременно полосы частот шириной до 400 МГц, оборудованы встроенными блоками для приема и просмотра сигналов телевизионных передатчиков. Точность настройки на анализируемый сигнал контролируется измерительным прибором.

Программно-аппаратные и специальные комплексы контроля.Существенное преимущество перед остальными получают сканерные приемники, имеющие возможность работы под управлением компьютера. Использование внешней ПЭВМ с программным обеспечением позволяет автоматизировать процесс поиска и обнаружения закладных устройств.

Высокая степень автоматизации позволяет проводить анализ радиоэлектронной обстановки (РЭО) по районам контроля, вести базу радиоэлектронных средств (РЭС) и использовать ее для эффективного обнаружения радиозакладок, в том числе при кратковременных сеансах их работы, например, при использовании радиозакладок с дистанционным управлением, промежуточным накоплением информации (разделением этапов съема и передачи информации) и полуактивных закладных устройств.

Система обнаружения излучений (СОИ)предназначена для обнаружения и локализации радиозакладок и других источников излучений внутри помещений. В состав системы входят блок регистрации и датчики излучения, число которых зависит от размеров помещения. В состав системы может входить от 2 до 20 датчиков,

Датчик излучения представляет собой широкополосный приемник, работающий в диапазоне частот от 0,1 до 10 000 МГц.

При превышении уровня электромагнитного поля вблизи датчика порогового значения срабатывает световая сигнализация. Например, дальность обнаружения датчиком сотового телефона составляет 10 ... 15 м.

Автоматизированный программно-аппаратный комплекс КРК-1предназначен для обнаружения и определения местоположения закладок с передачей информации по радиоканалу и проводным линиям (включая электросеть), а также выявления параметрических каналов утечки информации, возникающих вследствие акустического воздействия на технические средства (аппаратуру связи, оргтехнику и т.п.) [1 .

Конструктивно комплекс КРК выполнен в едином корпусе,к которому подключается клавиатура ПЭВМ, а также необходимое количество активных звуковых колонок и специальных широкодиапазонных антенн.

Комплекс КРК может функционировать в автоматическом и ручном режимах работы.

Специальное программное обеспечение рассчитано на работу с операционной системой Windows 95 и более поздними.

Идентификация сигналов осуществляется в автоматическом или ручном (в диалоге с оператором) режимах работы.

В режиме автоматической идентификациипосле первого прохода заданного диапазона идентификация сигналов происходит на всех частотах, не попавших в заранее задаваемый список запрещенныхчастот. На втором проходе контролируемого диапазона идентифицируются только вновь появившиеся сигналы и т.д. Таким образом с каждым циклом обзора происходит автоматическая адаптация комплекса к радиоэлектронной обстановке в зоне контроля. Это позволяет сократить процесс выявления сигналов радиозакладок с 60 ... 180 с (без адаптации к радиоэлектронной обстановке) до 5 с (после адаптации).

Помимо приведенного выше алгоритма в комплексе КРК дополнительно реализован алгоритм обнаружения источников радиоизлучении из контролируемого помещения, работающий по принципу сравнения уровня сигнала на антенне внутри контролируемой зоны и внешней (опорной) антенне. Используемый в этих целях специальный высокочастотный коммутатор позволяет обеспечить радиоконтроль в нескольких (до 8) помещениях как по алгоритму идентификации корреляционным методом, так и по алгоритму сравнения уровня сигналов на разнесенных антеннах.

Выявление параметрических каналов утечки информации, возникающих вследствие акустического воздействия на технические средства, производится комплексом КРК-1 с подключенной штыревой широкодиапазонной антенной по электрической составляющей поля в диапазоне частот 0,15 ... 1000 МГц или рамочной антенны по магнитной составляю-щей поля в диапазоне частот 0,15... 30 МГц (поставляется по отдельному заказу). При этом антенна устанавливается на расстоянии 1 м от исследуемой аппаратуры. Включается режим Обнаружение,при котором производится снятие радиоэлектронной обстановки (радиоспектра) при выключенном исследуемом устройстве путем сканирования диапазона не менее 10 раз. Затем устройство включается в штатный режим и производится снятие электрической и магнитной составляющих его спектра. Далее перед исследуемым устройством на расстоянии 1 м устанавливается звуковая колонка, включается режим Идентификацияи производится проверка частот спектра побочных электромагнитных излучений (ПЭМИ) на наличие паразитной модуляции в автоматическом режиме или оператором при помощи окон анализа.

В режиме анализа проводных линийко входу радиоприемного устройства комплекса вместо штыревой широкодиапазонной антенны подключается токосъемник, который обеспечивает подключение для проверки электросети, телефона, факса, каналов связи, проводки и кабелей. При подключении токосъемника к исследуемому каналу производится автоматическое обнаружение сигналов, их идентификация и локализация в автоматическом режиме или оператором.

Для обеспечения непрерывного контроля нескольких каналов телекоммуникаций к комплекту КРК дополнительно прилагаются несколько токосъемников с блоком БВЧК, который подключается ко входу радиоприемного устройства комплекса.

Портативные программно-аппаратные комплексыпредназначены для обнаружения и определения местоположения радиозакладок, а также контроля проводных сетей (выявления закладок, передающих информацию по проводным линиям, включая линии электросети) [1 .

Оператор может корректировать и дополнять хранящуюся в архиве информацию о сигнале, удалять записи и перемещать их из рабочей базы в архив.

Во время работы программы постоянно происходит фиксирование действий оператора и основных внешних событий. Эта информация может быть представлена в любое время в виде отчета о работе.

Имеется возможность запоминать текущую панораму, полученную в ходе перестройки приемника, и использовать ее в дальнейшем при обнаружении новых сигналов.

В процессе поиска закладных устройств оператору предоставляется оперативная визуальная, звуковая и документированная информация.

Документирование данных выполняется путем загрузки их в текстовый редактор Word, который вызывается программой при нажатии соответствующих кнопок управления.

Появляются следующие возможности:

– выявление излучений радиозакладок и их локализация;

– обнаружение и распознавание сигналов РЭС, выявление особенностей их работы;

– анализ индивидуальных особенностей спектров сигналов отдельных РЭС в интересах решения задачи их распознавания;

– выявление и анализ побочных электромагнитных излучений, возникающих при работе средств электронно-вычислительной техники, связи, оргтехники и т.п.;

– анализ данных по радиоэлектронной обстановке в точке приема, интенсивности использования фиксированных частот и работы отдельных РЭС;

– перехват и регистрация сообщений, передаваемых по каналам радиосвязи, и т.д.

По результатам выполнения задания составляется отчет, который может быть отредактирован оператором и выведен на печать.

Программа позволяет оператору с помощью обычного сканирующего радиоприемника проводить автоматический анализ загрузки выбранного участка радиодиапазона, выявлять в нем новые радиосигналы, осуществлять их автоматическую проверку на принадлежность к классу закладных систем, определять координаты радиозакладок [1, 3 .

Комплексы имеют в своем составе специальный сканирующий приемник, микропроцессор и генератор тестового акустического сигнала или бесшумный коррелятор. Достоинством таких комплексов является полная автоматизация процесса поиска и обнаружения закладных устройств.

Полное сканирование диапазона частот занимает около 3 ... 4 мин. Чтобы избежать перегрузки чувствительных микрофонов и надежно обнаруживать радиозакладки различных типов, громкость акустического сигнала ступенчато меняется: 1,5 ...

2 мин он излучается на полной громкости, затем то же время на половинной мощности.

Автоматический режим позволяет проводить проверку любого набора предварительно запрограммированных поддиапазонов, что наиболее эффективно в случаях непрерывного контроля в течение длительного времени либо для предварительной оценки электромагнитной обстановки.

Программное обеспечение позволяет отображать на экране ПЭВМ и регистрировать на жесткий диск амплитудно-частотную загрузку рабочего диапазона. Оператор в ручном режиме может проводить анализ спектров отдельных сигналов.

При обработке результатов измерений в нескольких точках помещения возможно получение на экране дисплея ПЭВМ двумерного (трехмерного) графического изображения уровня мощности принимаемого сигнала на фиксированной частоте.

Наличие узкополосного фильтра позволят выделять сигналы радиозакладок, маскируемые под сигналы мощных радиовещательных, телевизионных и других станций.

Приемник системы позволяет демодулировать сигналы на любой поднесущей частоте.

Средства контроля проводных линийпредназначены для выявления, идентификации и определения местоположения закладных устройств, подключаемых к проводным линиям, включая электросеть, телефонные кабели, линии селекторной связи, пожарной сигнализации и т.п.

Работа таких средств контроля основана на следующих принципах [1–6, 12–14, 17, 21,22 :

– измерении электрических параметров линии (амплитуд напряжения и тока в линии, а также значений емкости и индуктивности линии, активного и реактивного сопротивления);

– обнаружении в линии низкочастотного информационного (тестового) сигнала;

– обнаружении в линии сигнала высокочастотного навязывания;

– обнаружении в линии высокочастотного сигнала, модулированного низкочастотным информационным (тестовым) сигналом;

– обнаружении мест подключения средств съема информации методом локации (в том числе и нелинейной) проводной линии.

Для измерения параметров линий могут использоваться как обычные, так и специально разработанные для этих целей измерительные устройства, имеющие в своем составе специальные адаптеры для подключения к линиям различного типа.

Для обнаружения в линии низкочастотных информационных (тестовых) сигналов используются специальные низкочастотные усилители, а для обнаружения высокочастотных сигналов – специальные приемники или детекторы.

Специально разработанные средства контроля проводных линий, как правило, совмещают в себе почти все функции этих устройств. Исключение составляют специальные средства контроля телефонных линий связи.

Для обнаружения подключений к линии средств съема информации и определения мест подключения используются локаторы проводных линий, принцип работы которых аналогичен принципам работы обычных радиолокаторов. Отличие состоит только в том, что зондирующий сигнал не излучается, а подается в линию. По измененным параметрам отраженного сигнала можно судить о характере гальванически подключаемого к линии закладного устройства. При использовании нелинейного локатора проводных линий отраженный сигнал принимается на частоте второй гармоники зондирующего сигнала, что позволяет минимизировать ложные обнаружения.

Комплекс "АТ-2"предназначен для оценки параметров проводных коммуникаций в целях обнаружения посторонних подключений, в том числе устройств несанкционированного съема информации и их блоков питания, и включает: анализатор, тестер, соединительные провода, телефонную розетку-переходник, сетевой патрон-переходник и сетевой удлинитель. Весь комплекс размещается в атташе-кейсе.

Работа изделия основана на зондировании контролируемой линии переменным напряжением (частота зондирующего сигнала 40 и 400 Гц) с индикацией сигнала-отклика на экране осциллографа (так называемый осциллографический метод), по которому определяется наличие подключения к линии посторонних устройств. Дальность зондирования при сопротивлении изоляции 200 кОм – 5000 м [2].

Нелинейный локатор проводных линий “Визир”предназначен для обнаружения закладных устройств, подключенных к проводным коммуникациям (как силовым, так и слаботочным) в целях съема информации, а также цепей питания таких устройств [1 .

Принцип действия прибора заключается в подаче в линию зондирующего синусоидального сигнала напряжением 220 или 50 В и частотой 50 Гц и регистрации отраженных от подключенных к линии закладных устройств перехвата информации высших гармоник тока, возникающих в полупроводниковых элементах этих устройств при воздействии зондирующего сигнала. Анализ наличия высших гармоник проводится оператором визуально путем наблюдения изображения формы эллипса на жидкокристаллическом экране прибора.

Недостатком рассмотренных выше устройств является то, что они позволяют определить только факт подключения к линии закладного устройства, но не позволяют определить место его подключения.

Анализатор телефонных коммутаций "Бор-1"такого недостатка не имеет. Он позволяет контролировать следующие виды возможных нарушений телефонных линий [1 :

– неисправности токоведущих жил типа “обрыв”, “короткое замыкание”;

– параллельные отводы-расширители;

– контактные включения в линию сосредоточенных активных и реактивных нагрузок (устройств съема информации).

Нелинейные локаторы.Эта группа средств использует физические свойства среды, в которой может размещаться закладное устройство, или свойства элементов закладных устройств независимо от режима их работы.

Разработки нелинейных локаторов, получивших такое название из-за использования в своей работе нелинейных свойств полупроводниковых элементов, начались в США, Великобритании и СССР в середине 70-х гг. Первым устройством, поступившим на вооружение ЦРУ, был локатор “Super Scout”, серийный выпуск которого начался с 1980 г. В 1981 г. появился британский “Broom”, который несколько уступал американскому аналогу. Отечественный серийный локатор появился в 1982 г. и назывался “Орхидея”. Еще раньше ему предшествовали несколько образцов, которые были сняты с появлением “Орхидеи” [1 .

В настоящее время для поиска закладных устройств широко применяются нелинейные локаторы отечественного производства: “Обь”, “Онега-3”, NR-900Е, “Циклон”, “Родник-23”, “Родник-ПМ”, “Энвис”, “Переход” (локаторы “Энвис”, “Родник-ПМ” и “Переход” сняты с производства) и др., а также импортные локаторы: Super Broom, Orion (NJE - 4000), Super Scout и т.д.

Что касается важности применения нелинейного локатора, то в настоящее время это единственное техническое средство, которое гарантирует почти 100%-е качество обследования помещений по выявлению скрытых радиоэлектронных устройств.

Способность нелинейного локатора обнаруживать радиоэлектронные устройства основана на следующем. Любые радиоэлектронные устройства (РЭУ), независимо от размера и функционального назначения, состоят из печатных плат с проводниками, которые представляют для зондирующего сигнала локатора набор элементарных антенн-вибра-торов. В разрыв отдельных проводников включены полупроводниковые элементы: диоды, транзисторы, микросхемы.

В результате облучения РЭУ зондирующим сигналом на частоте f на его полупроводниковых элементах через элементарные антенны наводится переменная ЭДС. В силу нелинейного характера вольт-амперной характеристики (ВАХ) элементов РЭУ переменный сигнал высокой частоты локатора претерпевает нелинейное преобразование в наборгармоник, частоты которых равны кратному целому числу зондирующей частоты локатора (2f, 3f и т.д.). С помощью тех же самых проводников печатной платы (элементарных антенн) весь спектр, включающий сигналы как на основной частоте f, так и на частотах гармоник 2f, 3f и т.д., переизлучается в эфир. Приемник локатора, принимая любую высшую гармонику переотраженного зондирующего сигнала локатора, устанавливает наличие в зоне облучения РЭУ. Так как амплитуда сигнала на гармонике резко убывает с увеличением ее номера, то в нелинейных локаторах в основном используют 2-ю и реже 3-ю гармоники.

Коэффициент преобразования энергии зондирующего сигнала в энергию высших гармоник очень мал, что относит нелинейные локаторы к системам ближнего действия. Существенное влияние на величину коэффициента преобразования оказывают значения мощности и частоты зондирующего сигнала локатора. Зависимость коэффициента преобразования от мощности зондирующего сигнала в первом приближении повторяет структуру ВАХ полупроводниковых элементов.

Предыдущая статья:Технические устройства перехвата информации Следующая статья:Поиск с использованием индикаторов электромагнитного поля.
page speed (0.0156 sec, direct)