Всего на сайте:
119 тыс. 927 статей

Главная | Охрана труда, БЖД

Методы и средства защиты информации в технических каналах учреждений и предприятий  Просмотрен 24

  1. Технико-экономическое обоснование мероприятий по защите от несанкционированного доступа
  2. Оценка эффективности информационного канала с учетом защитных мероприятий
  3. ЗАЩИТА ТЕХНИЧЕСКИХ КАНАЛОВ СВЯЗИ ПРЕДПРИЯТИЙ И УЧРЕЖДЕНИЙ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА К ИНФОРМАЦИИ
  4. Устранение несанкционированного использования диктофона
  5. Технические устройства перехвата информации
  6. Анализ технических каналов учреждений и предприятий по несанкционированному доступу и защите от него
  7. Технические проверки предприятий и учреждений
  8. Защита телефонных линий
  9. Поиск с использованием индикаторов электромагнитного поля.
  10. Отношение дальностей при защите от несанкционированного доступа к информации
  11. ЗАЩИТА ТЕХНИЧЕСКИХ КАНАЛОВ СВЯЗИ ПРЕДПРИЯТИЙ И УЧРЕЖДЕНИЙ ОТ НЕСАНКЦИОНИРОВАННОГО ДОСТУПА К ИНФОРМАЦИИ, Список сокращений
  12. Защита речевой информации учреждений и предприятий

 

Защита информации от утечки по техническим каналам достигается проектно-архитектурными решениями, проведением организационных и технических мероприятий,а также выявлением портативных электронных устройств перехвата информации (впоследствии основное вниманиеуделим именно этому).

Организационное мероприятие– это мероприятие по защите информации, проведение которого не требует применения специально разработанных технических средств.

К основным организационным и режимным мероприятиям относятся [3, 5 :

– привлечение к проведению работ по защите информации организаций, имеющих лицензию на деятельность в области защиты информации, выданную соответствующими органами;

– категорирование и аттестация объектов ТСПИ и выделенныхдля проведения закрытых мероприятий помещений(далее выделенных помещений)по выполнению требований обеспечения защиты информации при проведении работ со сведениями соответствующей степени секретности;

– использование на объекте сертифицированных ТСПИ и ВТСС;

– установление контролируемой зоны вокруг объекта;

– привлечение к работам по строительству, реконструкции объектов ТСПИ, монтажу аппаратуры организаций, имеющих лицензию на деятельность в области защиты информации по соответствующим пунктам;

– организация контроля и ограничение доступа на объекты ТСПИ и в выделенные помещения;

– введение территориальных, частотных, энергетических, пространственных и временных ограничений в режимах использования технических средств, подлежащих защите;

– отключение на период закрытых мероприятий технических средств, имеющих элементы, выполняющие роль электроакустических преобразователей, от линий связи и т.д.

Техническое мероприятие– это мероприятие по защите информации, предусматривающее применение специальных технических средств, а также реализацию технических решений.

Технические мероприятия направлены на закрытие каналов утечки информации путем ослабления уровня информационных сигналов или уменьшением отношения сигнал/шум в местах возможного размещения портативных средств разведки или их датчиков до величин, обеспечивающих невозможность выделения информационного сигнала средством разведки, и проводятся с использованием активных и пассивных средств.

К техническим мероприятиямс использованием пассивных средствотносятся [1, 4 :

Контроль и ограничение доступа на объекты ТСПИ и в выделенные помещения:

установка на объектах ТСПИ и в выделенных помещениях технических средств и систем ограничения и контроля доступа.

Локализация излучений:

экранирование ТСПИ и их соединительных линий;

– заземление ТСПИ и экранов их соединительных линий;

– звукоизоляция выделенных помещений.

Развязывание информационных сигналов:

установка специальных средств защиты во вспомогательных технических средствах и системах, обладающих “микрофонным эффектом” и имеющих выход за пределы контролируемой зоны;

– установка специальных диэлектрических вставок в оплетки кабелей электропитания, труб систем отопления, водоснабжения канализации, имеющих выход за пределы контролируемой зоны;

– установка автономных или стабилизированных источников электропитания ТСПИ;

– установка устройств гарантированного питания ТСПИ;

– установка в цепях электропитания ТСПИ, а также в линиях осветительной и розеточной сетей выделенных помещений помехоподавляющих фильтров типа ФП.

К мероприятиямс использованием активных средствотносятся [1]:

Пространственное зашумление:

пространственное электромагнитное зашумление с использованием генераторов шума или создание прицельных помех (при обнаружении и определении частоты излучения закладного устройства или побочных электромагнитных излучений ТСПИ) с использованием средств создания прицельных помех;

– создание акустических и вибрационных помех с использованием генераторов акустического шума;

– подавление диктофонов в режиме записи с использованием подавителей диктофонов.

Линейное зашумление:

линейное зашумление линий электропитания;

– линейное зашумление посторонних проводников и соединительных линий ВТСС, имеющих выход за пределы контролируемой зоны.

Уничтожение закладных устройств:

– уничтожение закладных устройств, подключенных к линии, с использованием специальных генераторов импульсов (выжигателей “жучков”).

Выявление портативных электронных устройств перехвата информации (закладных устройств)осуществляется проведением специальных обследований,а также специальных проверокобъектов ТСПИ и выделенных помещений.

Специальные обследования объектов ТСПИ и выделенных помещений проводятся путем их визуального осмотра без применения технических средств.

Специальная проверка проводится с использованием технических средств:

Выявление закладных устройств с использованием пассивных средств:

– установка в выделенных помещениях средств и систем обнаружения лазерного облучения (подсветки) оконных стекол;

– установка в выделенных помещениях стационарных обнаружителей диктофонов;

– поиск закладных устройств с использованием индикаторов поля, интерсепторов, частотомеров, сканерных приемников и программно-аппаратных комплексов контроля;

– организация радиоконтроля (постоянно или на время проведения конфиденциальных мероприятий) и побочных электромагнитных излучений ТСПИ.

Выявление закладных устройств с использованием активных средств:

– специальная проверка выделенных помещений с использованием нелинейных локаторов;

– специальная проверка выделенных помещений, ТСПИ и вспомогательных технических средств с использованием рентгеновских комплексов.

Защита информации, обрабатываемой техническими средствами, осуществляется с применением пассивных и активных методов и средств.

Пассивные методы защиты информации направлены на:

– ослабление побочных электромагнитных излучений (информационных сигналов) ТСПИ на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;

– ослабление наводок побочных электромагнитных излучений (информационных сигналов) ТСПИ в посторонних проводниках и соединительных линиях ВТСС, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;

– исключение (ослабление) просачивания информационных сигналов ТСПИ в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.

Активные методы защиты информации направлены на:

– создание маскирующих пространственных электромагнитных помех в целях уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ;

– создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях ВТСС в целях уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ.

Ослабление побочных электромагнитных излучений ТСПИ и их наводок в посторонних проводниках осуществляется путем экранирования и заземления ТСПИ и их соединительных линий.

Исключение (ослабление) просачивания информационных сигналов ТСПИ в цепи электропитания достигается путем фильтрации информационных сигналов. Для создания маскирующих электромагнитных помех используются системы пространственного и линейного зашумления.

Экранирование технических средств.Функционирование любого технического средства информации связано с протеканием по его токоведущим элементам электрических токов различных частот и образованием разности потенциалов между различными точками его электрической схемы, которые порождают магнитные и электрические поля, называемые побочными электромагнитными излучениями.

Узлы и элементы электронной аппаратуры, в которых имеют место большие напряжения и протекают малые токи, создают в ближней зоне электромагнитные поля с преобладанием электрической составляющей. Преимущественное влияние электрических полей на элементы электронной аппаратуры наблюдается и в тех случаях, когда эти элементы малочувствительны к магнитной составляющей электромагнитного поля.

Узлы и элементы электронной аппаратуры, в которых протекают большие токи и имеют место малые перепады напряжения, создают в ближней зоне электромагнитные поля с преобладанием магнитной составляющей. Преимущественное влияние магнитных полей на аппаратуру наблюдается также в случае, если рассматриваемое устройство малочувствительно к электрической составляющей или она много меньше магнитной за счет свойств излучателя.

Переменные электрическое и магнитное поля создаются также в пространстве, окружающем соединительные линии (провода, кабели) ТСПИ.

Побочные электромагнитные излучения ТСПИ являются причиной возникновения электромагнитных и параметрических каналов утечки информации, а также могут оказаться причиной возникновения наводки информационных сигналов в посторонних токоведущих линиях и конструкциях. Поэтому снижению уровня побочных электромагнитных излучений уделяется большое внимание.

Эффективным методом снижения уровня ПЭМИ является экранирование их источников. Различают следующие способы экранирования [2]:

– электростатическое;

– магнитостатическое;

– электромагнитное.

Электростатическое и магнитостатическое экранирования основаны на замыкании экраном (обладающим в первом случае высокой электропроводностью, а во втором – магнитопроводностью) соответственно электрического и магнитного полей.

Электростатическое экранированиепо существу сводится к замыканию электростатического поля на поверхность металлического экрана и отводу электрических зарядов на землю (на корпус прибора). Заземление электростатического экрана является необходимым элементом при реализации электростатического экранирования. Применение металлических экранов позволяет полностью устранить влияние электростатического поля. При использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника наводки в Е раз, где Е – относительная диэлектрическая проницаемость материала экрана.

Основной задачей экранирования электрических полей является снижение емкости связи между экранируемыми элементами конструкции. Следовательно, эффективность экранирования определяется в основном отношением емкостей связи между источником и рецептором наводки до и после установки заземленного экрана. Поэтому любые действия, приводящие к снижению емкости связи, увеличивают эффективность экранирования.

Экранирующее действие металлического листа существенно зависит от качества соединения экрана с корпусом прибора и частей экрана друг с другом. Особенно важно не иметь соединительных проводов между частями экрана и корпусом. В диапазонах метровых и более коротких длин волн соединительные проводники длиной в несколько сантиметров могут резко ухудшить эффективность экранирования. На еще более коротких волнах дециметрового и сантиметрового диапазонов соединительные проводники и шины между экранами недопустимы. Для получения высокой эффективности экранирования электрического поля здесь необходимо применять непосредственное сплошное соединение отдельных частей экрана друг с другом.

В металлическом экране узкие щели и отверстия, размеры которых малы по сравнению с длиной волны, практически не ухудшают экранирование электрического поля.

С увеличением частоты эффективность экранирования снижается.

Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом [2, 4 :

– конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;

– в области низких частот (при глубине проникновения ( ) больше толщины (d), т.е. при  > d) эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;

– в области высоких частот (при d <  ) эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.

Магнитостатическое экранированиеиспользуется при необходимости подавить наводки на низких частотах от 0 до 3 ... 10 кГц.

Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим [1 :

– магнитная проницаемость материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например пермаллой);

– увеличение толщины стенок экрана приводит к повышению эффективности экранирования, однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;

– стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля. Их число должно быть минимальным;

– заземление экрана не влияет на эффективность магнитостатического экранирования.

Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Экранирование высокочастотного магнитного поля основано на использовании магнитной индукции, создающей в экране переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов внутри экрана будет направлено навстречу возбуждающему полю, и за его пределами – в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным внутри экрана и усиленным вне его. Вихревые токи в экране распределяются неравномерно по его сечению (толщине). Это вызывается явлением поверхностного эффекта, сущность которого заключается в том, что переменное магнитное поле ослабевает по мере проникновения в глубь металла, так как внутренние слои экранируются вихревыми токами, циркулирующими в поверхностных слоях.

Благодаря поверхностному эффекту плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону [2 .

Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Чем ниже частота, тем слабее действует экран, тем большей толщины приходится его делать для достижения одного и того же экранирующего эффекта. Для высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5 ... 1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует учитывать механическую прочность, жесткость, стойкость против коррозии, удобство стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобство пайки, сварки и пр. [6 .

Для частот выше 10 МГц медная или серебряная пленка толщиной более 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием [2 .

При экранировании магнитного поля заземление экрана не изменяет величины возбуждаемых в экране токов и, следовательно, на эффективность магнитного экранирования не влияет.

На высоких частотах применяется исключительно электромагнитное экранирование. Действие электромагнитного экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданным (благодаря образующимся в толще экрана вихревым токам) полем обратного направления.

Теория и практика показывают, что, с точки зрения стоимости материала и простоты изготовления, преимущества на стороне экранированного стального помещения. Однако при применении сетчатого экрана могут значительно упроститься вопросы вентиляции и освещения помещения. В связи с этим сетчатые экраны также находят широкое применение.

Вместе с тем соединение оболочки провода с корпусом в одной точке не ослабляет в окружающем пространстве магнитное поле, создаваемое протекающим по проводу током. Для экранирования магнитного поля необходимо создать поле такой же величины и обратного направления. С этой целью необходимо весь обратный ток экранируемой цепи направить через экранирующую оплетку провода. Для полного осуществления этого принципа необходимо, чтобы экранирующая оболочка была единственным путем для протекания обратного тока.

Высокая эффективность экранирования обеспечивается при использовании витой пары, защищенной экранирующей оболочкой [1 .

На низких частотах приходится использовать более сложные схемы экранирования – коаксиальные кабели с двойной оплеткой (триаксиальные кабели).

На более высоких частотах, когда толщина экрана значительно превышает глубину проникновения поля, необходимость в двойном экранировании отпадает. В этом случае внешняя поверхность играет роль электрического экрана, а по внутренней поверхности протекают обратные токи.

Применение экранирующей оболочки существенно увеличивает емкость между проводом и корпусом, что в большинстве случаев нежелательно. Экранированные провода более громоздки и неудобны при монтаже, требуют предохранения от случайных соединений с посторонними элементами и конструкциями.

Длина экранированного монтажного провода должна быть меньше четверти длины самой короткой волны передаваемого по проводу спектра сигнала. При использовании более длинных участков экранированных проводов необходимо иметь в виду, что в этом случае экранированный провод следует рассматривать как длинную линию, которая во избежании искажений формы передаваемого сигнала должна быть нагружена на сопротивление, равное волновому.

Для уменьшения взаимного влияния монтажных цепей следует выбирать длину монтажных высокочастотных проводов наименьшей, для чего элементы высокочастотных схем, связанные между собой, следует располагать в непосредственной близости, а неэкранированные провода высокочастотных цепей – при пересечении под прямым углом. При параллельном расположении такие провода должны быть максимально удалены друг от друга или разделены экранами, в качестве которых могут быть использованы несущие конструкции электронной аппаратуры (кожух, панель и т.д.).

Экранированные провода и кабели следует применять в основном для соединения отдельных блоков и узлов друг с другом.

Кабельные экраны выполняются в форме цилиндра из сплошных оболочек, в виде спирально намотанной на кабель плоской ленты или в виде оплетки из тонкой проволоки. Экраны при этом могут быть однослойными и многослойными комбинированными, изготовленными из свинца, меди, стали, алюминия и их сочетаний (алюминий-свинец, алюминий-сталь, медь-сталь-медь и т.д.).

В кабелях с наружными пластмассовыми оболочками применяют экраны ленточного типа в основном из алюминиевых, медных и стальных лент, накладываемых спирально или продольно вдоль кабеля.

В области низких частот корпуса применяемых многоштырьковых низкочастотных разъемов являются экранами и должны иметь надежный электрический контакт с общей шиной или землей прибора, а зазоры между разъемом и корпусом должны быть закрыты электромагнитными уплотняющими прокладками.

В области высоких частот коаксиальные кабели должны быть согласованы по волновому сопротивлению с используемыми высокочастотными разъемами. При заделке коаксиального кабеля в высокочастотные разъемы жила кабеля не должна иметь натяжения в месте соединения с контактом разъема, а сам кабель должен быть жестко прикреплен к шасси аппаратуры вблизи разъема.

Для эффективного экранирования низкочастотных полей применяются экраны, изготовленные из ферромагнитных материалов с большой относительной магнитной проницаемостью. При наличии такого экрана линии магнитной индукции проходят в основном по его стенкам, которые обладают малым сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования таких полей зависит от магнитной проницаемости экрана и сопротивления магнитопровода, которое будет тем меньше, чем толще экран и меньше в нем стыков и швов, идущих поперек направления линий магнитной индукции.

Наиболее экономичным способом экранирования информационных линий связи между устройствами ТСПИ считается групповое размещениеих информационных кабелей в экранирующий распределительный короб. Когда такого короба нет, то приходится экранировать отдельные линии связи [2, 7 .

Для защиты линий связи от наводок необходимо разместить линию в экранирующую оплетку или фольгу, заземленную в одном месте, чтобы избежать протекания по экрану токов, вызванных неэквипотенциальностью точек заземления. Для защиты линии связи от наводок необходимо минимизировать площадь контура, образованного прямым и обратным проводами линии. Если линия представляет собой одиночный провод, а возвратный ток течет по некоторой заземляющей поверхности, то необходимо максимально приблизить провод к поверхности. Если линия образована двумя проводами, то их необходимо скрутить, образовав бифиляр (витую пару). Линии, выполненные из экранированного провода или коаксиального кабеля, в которых по оплетке протекает возвратный ток, также отвечают требованию минимизации площади контура линии.

Наилучшую защиту как от электрического, так и от магнитного полей обеспечивают информационные линии связи типа экранированно го бифиляра, трифиляра (трех скрученных вместе проводов, из которых один используется в качестве электрического экрана), триаксильного кабеля (изолированного коаксильального кабеля, помещенного в электрический экран), экранированного плоского кабеля (плоского многопроводного кабеля, покрытого с одной или обеих сторон медной фольгой).

Для уменьшения магнитной и электрической связи между проводами необходимо уменьшить площадь петли, максимально разнести цепи и максимально уменьшить длину параллельного пробега линий ТСПИ с посторонними проводниками.

При нулевых уровнях сигналов в соединительных линиях ТСПИ между ними и посторонними проводниками должно обепечиваться переходное затухание не менее 114 дБ (13 Нп) [1 . Данное переходное затухание обеспечивается, как правило, при прокладке кабелей ТСПИ на расстоянии не менее 0,1 м от посторонних проводников. При этом допускается прокладка кабелей ТСПИ вплотную с посторонними проводниками при суммарной длине их совместного пробега не более 70 м.

Экранироваться могут не только отдельные блоки (узлы) аппаратуры и их соединительные линии, но и помещения в целом.

В обычных (неэкранированных) помещениях основной экранирующий эффект обеспечивают железобетонные стены домов. Экранирующие свойства дверей и окон хуже. Для повышения экранирующих свойств стен применяются дополнительные средства, в том числе [1 :

– токопроводящие лакокрасочные покрытия или обои;

– шторы из металлизированной ткани;

– металлизированные стекла (например из двуокиси олова), устанавливаемые в металлические или металлизированные рамы.

В помещении экранируются стены, двери и окна. При закрытии двери должен обеспечиваться надежный электрический контакт со стенками помещения (с дверной рамой) по всему периметру не реже чем через 10 ... 15 мм. Для этого может быть применена пружинная гребенка из фосфористой бронзы, которую укрепляют по всему внутреннему периметру дверной рамы.

Окна должны быть затянуты одним или двумя слоями медной сетки с ячейкой не более 2 2 мм, причем расстояние между слоями сетки должно быть не менее 50 мм. Оба слоя сетки должны иметь хороший электрический контакт со стенками помещения (с рамой) по всему периметру. Сетки удобнее делать съемными, и металлическое обрамление съемной части также должно иметь пружинящие контакты из фосфористой бронзы [2  При проведении работ по тщательному экранированию подобных помещений необходимо одновременно обеспечить нормальные условия для работающего в нем человека, прежде всего вентиляцию воздуха.

Конструкция экрана для вентиляционных отверстий зависит от диапазона частот. Для частот менее 1000 МГц применяются сотовые конструкции, закрывающие вентиляционное отверстие, с прямоугольными, круглыми, шестигранными ячейками. Для достижения эффективного экранирования размеры ячеек должны быть менее одной десятой от длины волны. При повышении частоты необходимые размеры ячеек могут быть столь малыми, что ухудшается вентиляция.

Заземление коммуникационных технических средств.Необходимо помнить, что экранирование ТСПИ и соединительных линий эффективно только при правильном их заземлении. Поэтому одним из важнейших условий по защите ТСПИ является правильное заземление этих устройств. Наиболее часто используются одноточечные, многоточечные и комбинированные (гибридные) схемы.

Как правило, одноточечное заземление применяется на низких частотах при небольших размерах заземляемых устройств. На высоких частотах при больших размерах заземляемых устройств и значительных расстояниях между ними используется многоточечная система заземления. В промежуточных случаях эффективна комбинированная (гибридная) система заземления, представляющая собой различные сочетания одноточечной, многоточечной и плавающей заземляющих систем.

Заземление технических средств систем информатизации и связи должно быть выполнено в соответствии с определенными правилами. Основные требования, предъявляемые к системе заземления, заключаются в следующем [1, 6 :

– система заземления должна включать общий заземлитель, заземляющий кабель, шины и провода, соединяющие заземлитель с объектом;

– сопротивления заземляющих проводников, а также земляных шин должны быть минимальными;

– каждый заземляемый элемент должен быть присоединен к заземлителю или к заземляющей магистрали при помощи отдельного ответвления. Последовательное включение в заземляющий проводник нескольких заземляемых элементов запрещается;

– в системе заземления должны отсутствовать замкнутые контуры, образованные соединениями или нежелательными связями между сигнальными цепями и корпусами устройств, между корпусами устройств и землей;

– следует избегать использования общих проводников в системах экранирования, заземления и сигнальных цепей;

– качество электрических соединений в системе заземления должно обеспечивать минимальное сопротивление контакта, надежность и механическую прочность контакта в условиях климатических воздействий и вибрации;

– контактные соединения должны исключать возможность образования оксидных пленок на контактирующих поверхностях и связанных с этими пленками нелинейных явлений;

– контактные соединения должны исключать возможность образования гальванических пар для предотвращения коррозии в цепях заземления;

– запрещается использовать в качестве заземляющего устройства нулевые фазы электросетей, металлоконструкции зданий, имеющие соединение с землей, металлические оболочки подземных кабелей, металлические трубы систем отопления, водоснабжения, канализации и т д.

Сопротивление заземления определяется главным образом сопротивлением растекания тока в земле. Величину этого сопротивления можно значительно понизить за счет уменьшения переходного сопротивления между заземлителем и почвой путем тщательной очистки перед укладкой поверхности заземлителя и утрамбовкой вокруг него почвы, а также подсыпкой поваренной соли [2].

Фильтрация информационных сигналов.Одним из методов локализации опасных сигналов, циркулирующих в технических средствах и системах обработки информации, является фильтрация [1,8]. В источниках электромагнитных полей и наводок фильтрация осуществляется в целях предотвращения распространения нежелательных электромагнитных колебаний за пределы устройства – источника опасного сигнала. Фильтрация в устройствах – рецепторах электромагнитных полей и наводок должна исключить их воздействие на рецептор.

Для фильтрации сигналов в цепях питания ТСПИ используются разделительные трансформаторы и помехоподавляющие фильтры.

Разделительные трансформаторы. Такие трансформаторы должны обеспечивать развязку первичной и вторичной цепей по сигналам наводки.Это означает, что во вторичную цепь трансформатора не должны проникать наводки, появляющиеся в цепи первичной обмотки. Проникновение наводок во вторичную обмотку объясняется наличием нежелательных резистивных и емкостных цепей связи между обмотками.

Для уменьшения связи обмоток по сигналам наводок часто применяется внутренний экран, выполняемый в виде заземленной прокладки или фольги, укладываемой между первичной и вторичной обмотками. С помощью этого экрана наводка, действующая в первичной обмотке, замыкается на землю. Однако электростатическое поле вокруг экрана также может служить причиной проникновения наводок во вторичную цепь.

Разделительные трансформаторы используются в целях решения ряда задач [9 , в том числе для:

– разделения по цепям питания источников и рецепторов наводки, если они подключаются к одним и тем же шинам переменного тока;

– устранения асимметричных наводок;

– ослабления симметричных наводок в цепи вторичной обмотки, обусловленных наличием асимметричных наводок в цепи первичной обмотки.

Средства развязки и экранирования, применяемые в разделительных трансформаторах, обеспечивают максимальное значение сопротивления между обмотками и создают для наводок путь с малым сопротивлением из первичной обмотки на землю. Это достигается обеспечением высокого сопротивления изоляции соответствующих элементов конструкции (~104 МОм) и незначительной емкости между обмотками. Указанные особенности трансформаторов для цепей питания обеспечивают более высокую степень подавления наводок, чем обычные трансформаторы.

Разделительный трансформатор со специальными средствами экранирования и развязки обеспечивает ослабление информационного сигнала наводки в нагрузке на 126 дБ при емкости между обмотками 0,005 пФ и на 140 дБ при емкости между обмотками 0,001 пФ [2 .

Средства экранирования, применяемые в разделительных трансформаторах, должны не только устранять влияние асимметричных наводок на защищаемое устройство, но и не допустить на выходе трансформатора симметричных наводок, обусловленных асимметричными наводками на его входе. Применяя в разделительных трансформаторах специальные средства экранирования, можно существенно (более чем на 40 дБ) уменьшить уровень таких наводок.

Помехоподавляющие фильтры.В настоящее время существует большое количество различных типов фильтров, обеспечивающих ослабление нежелательных сигналов в разных участках частотного диапазона. Это фильтры нижних и верхних частот, полосовые и заграждающие фильтры и т.д. [8 . Основное назначение фильтров – пропускать без значительного ослабления сигналы с частотами, лежащими в рабочей полосе частот, и подавлять (ослаблять) сигналы с частотами, лежащими за пределами этой полосы.

Для исключения просачивания информационных сигналов в цепи электропитания используются фильтры нижних частот.

Фильтр нижних частот (ФНЧ) пропускает сигналы с частотами ниже граничной частоты (f < fгр) и подавляет – с частотами выше граничной частоты.

Основные требования, предъявляемые к защитным фильтрам, заключаются в следующем [1]:

– величины рабочего напряжения и тока фильтра должны соответствовать напряжению и току фильтруемой цепи;

– величина ослабления нежелательных сигналов в диапазоне рабочих частот должна быть не менее требуемой;

– ослабление полезного сигнала в полосе прозрачности фильтра должно быть незначительным;

– габариты и масса фильтров должны быть минимальными;

– фильтры должны обеспечивать функционирование при определенных условиях эксплуатации (температура, влажность, давление) и механических нагрузках (удары, вибрация и т.д.);

– конструкции фильтров, должны соответствовать требованиям техники безопасности.

К фильтрам цепей питания предъявляются следующие дополнительные требования [1 :

– затухание, вносимое такими фильтрами в цепи постоянного или переменного тока основной частоты, должно быть минимальным (например 0,2 дБ и менее) и иметь большое значение (больше 60 дБ) в полосе подавления, которая в зависимости от конкретных условий может быть достаточно широкой (до 10 ГГц) ;

– сетевые фильтры должны эффективно работать при сильных проходящих токах, высоких напряжениях и высоких уровнях мощности проходящих и задерживаемых электромагнитных колебаний;

– ограничения, накладываемые на допустимые уровни нелинейных искажений формы напряжения питания при максимальной нагрузке, должны быть достаточно жесткими (например, уровни гармонических составляющих напряжения питания с частотами выше 10 кГц должны быть на 80 дБ ниже уровня основной гармоники).

Рассмотрим влияние этих параметров более подробно.

Напряжение,приложенное к фильтру, должно быть таким, чтобы оно не вызывало пробоя конденсаторов фильтра при различных скачках питающего напряжения, включая скачки, обусловленные переходными процессами в цепях питания [8 .

Токчерез фильтр должен быть таким, чтобы не возникало насыщения сердечников катушек фильтра. Кроме того, следует учитывать, что с увеличением тока через катушку увеличивается реактивное падение напряжения на ней. Это может привести к тому, что [1 :

– ухудшится эквивалентный коэффициент стабилизации напряжения в цепи питания, содержащей фильтр;

– возникнет взаимозависимость переходных процессов в различных нагрузках цепи питания

Наибольшие скачки напряжения при этом возникают во время отключения нагрузок, так как большинство из них имеют индуктивный характер.

Характеристики фильтров зависят от числа использованных реактивных элементов. Так, например, фильтр из одного параллельного конденсатора или одной последовательной индуктивной катушки может обеспечить затухание лишь 20 дБ/декада вне полосы пропускания, a LC-фильтр из десяти или более элементов – более 200 дБ/декада.

Из-за паразитной связи между входом и выходом фильтра на практике трудно получить затухание более 100 дБ. Если фильтр неэкранированный и сигнал подается на него и снимается с помощью неэкранированных соединений (проводов), то развязка между входом и выходом не превышает 40 ... 60 дБ.

Для обеспечения развязки более 60 дБ необходимо использовать экранированные фильтры с разъемами и использовать для соединения экранированные провода.

Фильтры с гарантируемым затуханием 100 дБ выполняют в виде узла с электромагнитным экранированием, который помещается в корпус, изготовленный из материала с высокой магнитной проницаемостью магнитного экрана. Этим существенно уменьшается возможность возникновения внутри корпуса паразитной связи между входом и выходом фильтра из-за магнитных электрических или электромагнитных полей.

Из-за влияния паразитных емкостей и индуктивностей фильтр зачастую не обеспечивает требуемого затухания на частотах, превышающих граничную частоту (fc) на две декады, и полностью может потерять работоспособность на частотах, превышающих граничную частоту на несколько декад.

Реализация пассивных методов защиты, основанных на применении экранирования и фильтрации, приводит к ослаблению уровней побочных электромагнитных излучений и наводок (опасных сигналов) ТСПИ и тем самым к уменьшению отношения с/ш. Однако в ряде случаев, несмотря на применение пассивных методов защиты, на границе контролируемой зоны отношение с/ш превышает допустимое значение. В этом случае применяются активные меры защиты, основанные на создании помех средствам разведки, что также приводит к уменьшению отношения с/ш.

Пространственное и линейное электромагнитные зашумления.Для исключения перехвата побочных электромагнитных излучений по электромагнитному каналу используется пространственное зашумление, а для исключения съема наводок информационных сигналов с посторонних проводников и соединительных линий ВТСС – линейное зашумление.

К системе пространственного зашумления,применяемой для создания маскирующих электромагнитных помех, предъявляются следующие требования:

– система должна создавать электромагнитные помехи в диапазоне частот возможных побочных электромагнитных излучений ТСПИ;

– создаваемые помехи должны быть нерегулярной структуры;

– уровень создаваемых помех (как по электрической, так и по магнитной составляющей поля) должен обеспечить отношение с/ш на границе контролируемой зоны меньше допустимого значения во всем диапазоне частот возможных побочных электромагнитных излучений ТСПИ;

– помехи должны быть как с горизонтальной, так и с вертикальной поляризацией (поэтому выбору антенн для генераторов помех уделяется особое внимание);

– на границе контролируемой зоны уровень помех, создаваемых системой пространственного зашумления, не должен превышать требуемых норм по ЭМС.

Цель пространственного зашумления считается достигнутой, если отношение опасный сигнал/шум на границе контролируемой зоны не превышает некоторого допустимого значения, рассчитываемого по специальным методикам для каждой частоты – информационного (опасного) побочного электромагнитного излучения ТСПИ [2 .

В системах пространственного зашумления в основном используются помехи типа “белого шума” или “синфазные помехи”.

Системы, реализующие метод “синфазной помехи”, в основном применяются для защиты ПЭВМ. В них в качестве помехового сигнала используются импульсы случайной амплитуды, совпадающие (синхронизированные) по форме и времени существования с импульсами полезного сигнала. Вследствие этого по своему спектральному составу помеховый сигнал аналогичен спектру побочных электромагнитных излучений ПЭВМ, т.е. система зашумления генерирует “имитационную помеху”, по спектральному составу соответствующую скрываемому сигналу.

В настоящее время в основном применяются системы пространственного зашумления, использующие помехи типа “белый шум”, существенно превышающие уровни побочных электромагнитных излучении [1, 8 . Такие системы применяются для защиты широкого класса технических средств: электронно-вычислительной техники, систем звукоусиления и звукового сопровождения, систем внутреннего телевидения и т.д

Диапазон рабочих частот генераторов шума от 0,01 ... 0,1 до 1000 МГц. При мощности излучения около 20 Вт обеспечивается спектральная плотность помехи 40 ... 80 дБ.

В системах пространственного зашумления в основном используются слабонаправленные антенны.

При использовании систем пространственного зашумления необходимо помнить, что наряду с помехами средствам разведки создаются помехи и другим радиоэлектронным средствам (например, системам телевидения, радиосвизи и т.д.). Поэтому при вводе в эксплуатацию системы пространственного зашумления необходимо проводить специальные исследования по требованиям обеспечения электромагнитной совместимости (ЭМС). Кроме того, уровни помех, создаваемые системой зашумления, должны соответствовать санитарно-гигиеническим нормам. Однако нормы на уровни электромагнитных излучений по требованиям ЭМС существенно строже санитарно-гигиенических норм. Следовательно, основное внимание необходимо уделять выполнению норм ЭМС.

Пространственное зашумление эффективно не только для закрытия электромагнитного, но и электрического каналов утечки информации, так как помеховый сигнал при излучении наводится в соединительных линиях ВТСС и посторонних проводниках, выходящих за пределы контролируемой зоны.

Системы линейного зашумленияприменяются для маскировки наведенных опасных сигналов в посторонних проводниках и соединительных линиях ВТСС, выходящих за пределы контролируемой зоны. Они используются в том случае, если не обеспечивается требуемый разнос этих проводников и ТСПИ (т.е. не выполняется требование по Зоне № 1), однако при этом обеспечивается требование по Зоне № 2 (т.е. расстояние от ТСПИ до границы контролируемой зоны больше, чем Зона № 2).

В простейшем случае система линейного зашумления представляет собой генератор шумового сигнала, формирующий шумовое маскирующее напряжение с заданными спектральными, временными и энергетическими характеристиками, который гальванически подключается в зашумляемую линию (посторонний проводник).

На практике наиболее часто подобные системы используются для зашумления линий электропитания (например, линий электропитания осветительной и розеточной сетей).

 

Предыдущая статья:Анализ технических каналов учреждений и предприятий по несанкционированному доступу и защите от него Следующая статья:Защита речевой информации учреждений и предприятий
page speed (0.0124 sec, direct)