Всего на сайте:
183 тыс. 477 статей

Главная | Биология, Зоология, Анатомия

Атипові зміни числа хромосом.  Просмотрен 860

Анеуплоїдія (від грец. an — заперечна частка, eu — добрий, ploos — складати), або гетероплоїдія (від грец. heteros — інший); — протилежність Порушення збалансованого числа хромосом у наборі відбувається частіше в результаті нерозходження хромосом при мітозі під впливом зовнішніх або внутрішніх факторів. Залежно від того, яка кількість хромосом відсутня або перевищує число хромосом у диплоїдному наборі, розрізняють декілька форм анеуплоїдії.

Моносомія - відсутність однієї хромосоми в диплоїдному наборі (умовне позначення 2n–1).

Трисомія — це такий набір, в якому одна хромосома представлена тричі, а не парою гомологічних хромосом, як звичайно (умовне позначення 2n+1).

Тетрасомія — в диплоїдному наборі яких є ще по парі гомологічних хромосом (склад ядер таких клітин позначають 2n+2).

Нулісомія — в диплоїдному наборі відсутня пара гомологічних хромосом (2n–2).

Міксоплоїдією називають зміну кількості хромосом, коли в одного індивіда в різних клітинах може бути різна кількість хромосом (до 1000), наприклад, в клітинах HeLa (ракових клітинах).

Хромосомні аберації ( від лат. aberratіo — ухилення), або перебудови — зміни структури хромосом, викликані дією на клітини мутагенних факторів (іонізуючого випромінювання, канцерогенів тощо). Розрізняють декілька різновидів хромосомних аберацій.

Делеція (від лат. deletio — нестача) — випадання частини хромосоми при її розривах з втратою відірваного сегмента. Розрізняють кінцеву делецію — відрив кінцевої ділянки з вкороченням хромосоми та інтерстиціальну делецію — втрату внутрішнього фрагмента хромосоми.

Дуплікація (від лат. duplex — подвійний) — подвоєння певного сегмента в хромосомі. Якщо подвоєння ділянки в хромосомі відбулося в результаті переміщення його з іншої хромосоми (частіше гомологічної), то таку дуплікацію називають переміщеною. Коли дуплікований сегмент знаходиться в хромосомі поряд з вихідним, то це дуплікація повторень.

Транслокації (від лат. trans — через і locus — місце) — взаємообмін відділеними уламками (фрагментами) між гомологічними і негомологічними хромосомами в процесі кросинговеру, як статевого (при мейозі), так і соматичного. Такий взаємообмін можливий при двох одночасних розривах в різних хромосомах. Якщо при транслокації зіллються два сегменти, які містять хромомери, то виникне дицентрична хромосома, а з’єднання двох сегментів без центромер дає ацентричну хромосому.

Інверсія (від лат. inversio — перевертання, переставлення) відбувається внаслідок перевертання уламка хромосоми на 180 градусів після її розриву в двох місцях з наступним з’єднанням двох кінцевих і переверненого серединного сегментів. В інвертованому сегменті порядок розміщення генів міняється на обернений.

Каріотипування — діагностичне дослідження для оцінки каріотипу, визначення метафазних хромосом окремих зручних для дослідження клітин цього організму. Таким методом можна визначити каріотип виду чи індивіда, а також хромосомні аномалії організму.

Каріотип — це група ознак (число, форма, розміри) набору хромосом певного виду (тварин чи рослин) чи індивіда. Визначають каріотип шляхом вивчення хромосомного набору представників відповідного виду. В основу класифікації хромосом покладена їх довжина, відношення розмірів довгого і короткого плеча, а також наявність вторинної перетяжки і сателітів. Зазначеними характеристиками користуються для ідентифікації хромосом у хромосомних наборах.

При каріотипуванні користуються культурою тканин. На тканинну культуру, клітини якої діляться мітозом, діють колхіцином, алкалоїдом, який руйнує мітотичне веретено і мітоз зупиняться на метафазі. 3 розчавленого препарату клітини виготовляють мікрофотографію, яку збільшують, хромосоми вирізають і соматичні вишиковують парами від найдовших до найкоротших. Потім виділяють групи подібних хромосом і позначають їх латинським алфавітом. Статеві хромосоми розташовують в кінці каріотипу. .

Ідіограма — це схема каріотипу, його графічний запис. Для ідіограми достатньо зобразити по одній соматичній хромосомі з кожної пари і пару статевих хромосом.

Дані про будову хромосомного комплексу використовуються каріосистематикою, яка вивчає структуру клітинного ядра у різних груп організмів. Таксономічне значення мають не тільки кількість і морфологія хромосом; враховуються такі показники, як кількість ДНК в ядрі, нуклеотидний склад ДНК, розподіл гетеро- і еухроматину, характер поперечної смугастості хромосом, який виникає при диференціальному забарвлюванні тощо. Для багатьох груп каріосистематика використовує найповнішу характеристику ядерного апарату. Завдяки цьому виявляють ступінь філогенетичної спорідненості окремих видів, оцінюють шляхи еволюції каріотипу, встановлюють походження домашніх тварин і культурних рослин, передбачають, якими будуть наслідки віддаленої гібридизації.

Для визначення локалізації генів та побудови генетичних карт застосовують диференціальне забарвлання хромосом у поєднанні з біохімічними методами та методом соматичної гібридизації.

При застосуванні основних барвників інтенсивність забарвлення окремих ділянок хромосом варіює. Ділянки з високим вмістом ДНК, які дуже спіралізовані, забарвлюються інтенсивно, а деспіралізовані — мають світле забарвлення. Це чітко видно в гігантських хромосомах. У звичайних хромосомах поперечна диференціація менш виражена і виявляється переважно в ранній профазі, коли розпізнати хромосоми дуже важко.

В останні десятиріччя почали використовувати ряд нових барвників і методів, які забезпечують диференціальне забарвлення сегментів метафазних хромосом на основі специфічної взаємодії барвників з окремими ділянками ДНК та білками. Рисунок поперечної смугастості, який виникає внаслідок диференціального забарвлення, специфічний для кожної хромосоми.

Чорні смуги на рисунку — це ділянки, які інтенсивно забарвлюються флуоресцентним барвником типу хінакрину, білі — незабарвлені смуги, а крапками позначені ділянки, які в хромосомах різних індивідів забарвлюються неоднаково.

Методи диференціального забарвлення мають важливе практичне значення. Вони дають змогу розпізнати кожну хромосому навіть у близьких видів. Завдяки розробці цих методів збільшилася вирішальна здатність цитогенетичного методу. Безпомилково ідентифікують навіть незначні структурні зміни хромосом. Це має важливе значення для діагностики хромосомних захворювань людини.

Каріотип людини. У ссавців для каріотипу індивідів чоловічої статі характерна наявність різних за формою і величиною статевих Х- і Y-хромосом, у всіх клітинах самок є по дві Х-хромосоми. У птахів співвідношення протилежні: самці мають однакові ZZ-хромосоми, а самки — Z- і W-хромосоми.

У каріотипі людини виділені такі групи хромосом (рис. 2.33):

А 1–3 пари метацентричні;

В 4–5 пари субметацентричні;

С 6–12 пари субметацентричні коротші;

D 13–15 пари акроцентричні з вторинною перетяжкою і сателітом;

Е 16–18 пари субметацентричні;

F 19–20 пари субметацентричні, коротші;

G 21–22 пари акроцентричні з вторинною перетяжкою.

Y-хромосома в чоловічому наборі подібна до 21–22 G-групи, Х-хромосома подібна до хромосоми С-групи.

Вторинні перетяжки і сателіти мають 5 пар хромосом, які називають організаторами ядерця (13–15 та 21 і 22 пари).

Вивчення хромосом стало основою нового напрямку генетичної науки — соматичної генетики.

Репродукція хромосом. В основі подвоєння маси хромосом лежить аутосинтез ДНК (реплікація). При реплікації ДНК подвійний її ланцюг розплітається і до кожної його половини приєднуються нуклеотиди за принципом комплементарного спарювання азотистих основ: аденін з’єднується з тиміном (А–Т), а гуанін з цитозином (Г–Ц). Таким чином, у кожній молекулі ДНК після реплікації буде половина старої молекули, а половина нової. Такий шлях реплікації називається напівконсервативним

Коли ДНК реплікувала таким чином, але утворені ланцюги розплітаються і нова половина однієї молекули сполучається з новою другої, а одна старої — з другою старої, то це буде консервативний шлях реплікації ДНК.

Буває ще дисперсний шлях, коли чергуються ділянки по-різному реплікованої ДНК. Для синтезу ДНК потрібні ферменти: (1) ДНК-полімераза синтезує фрагменти ДНК, (2) ДНК-лігаза — зшиває їх, (3) ендонуклеаза здійснює розриви в поліпептидному ланцюгу при необхідності заміни частини ДНК.

Функціонування хромосом. Хромосоми несуть генетичну інформацію про синтез білка, виконують головну “командну” роль у визначеності специфічності білка. Не можна забувати, що інформація про синтез білка закодована в ядрі, у ДНК, а синтез білка відбувається в цитоплазмі. Як же потрапляє інформація про синтез білка з ядра в цитоплазму? Вона передається через інформаційну РНК, синтезовану в ядрі на половині ДНК і передану через порові комплекси каріолеми в цитоплазму.

РНК синтезується на деконденсованих ділянках ДНК — еухроматинових районах, де містяться активні гени (їх у клітині від 0,0001 до 0,001 від загальної кількості).

У ДНК закодована інформація про синтез білка. Код (франц.code, від лат.

codeх — звіт законів) — це система символів для зберігання інформації та переведення однієї її форми в іншу.

Ген (від грец. genos — рід, походження) — це ділянка ДНК-матриці, на якій будується одна молекула іРНК, відповідальна за синтез одного поліпептида. Іншими словами ген є неподільною одиницею генетичного матеріалу, ділянкою молекули ДНК (у деяких вірусів РНК), яка кодує первинну структуру поліпепетида, молекули транспортної або рибосомальної РНК, або взаємодіє з регуляторним білком. Сукупність всіх одиниць інформації (генів), які містяться в клітині називають геномом, а сукупність генів даної клітини або організму складає його генотип.

До складу ДНК входять: структурні гени, які несуть інформацію для синтезу ферментів і структурних білків;

гени, які визначають синтез транспортних РНК (тРНК);

гени, які контролюють синтез рибосомної РНК (рРНК);

регуляторні гени (промотори, оператори), які регулюють активність інших генів.

Крім цього, у ДНК виявлені спейсери — неінформативні ділянки різної довжини, які відокремлюють гени один від одного. Структурні гени — це кістяк геному, оскільки вони кодують структуру білків, визначають чергування амінокислотних залишків у поліпептидному ланцюгу. Регуляторні гени виконують регуляторні функції і контролюють експресію (прояв) структурних генів.

З’ясовано, що гени еукаріотів є переривчастими, мозаїчними, вони складаються з кодуючих ділянок — екзонів, розділених некодуючими — інтронами. Екзон (від англ. ех (pressi)on – виразність) — ділянка гена (ДНК) еукаріот, який несе генетичну інформацію, що кодує синтез білка. Ділянки ДНК, які відповідають екзонам, на відміну від інтронів, повністю представлені в молекулі інформаційної РНК, що кодує первинну структуру білка. Екзони в структурі гена чергуються з інтронами.

Інтрон (англ. intron від intervening sequence — букв. проміжна послідовність) — ділянка гена (ДНК) еукаріот, яка, як правило, не несе генетичної інформації, що відповідає за синтез білка, кодованого даним геном. Інтрони розміщені між екзонами і представлені лише в первинному транскрипті — посередникові іРНК (про-іРНК), при дозріванні іРНК вони видаляються (екзони залишаються). Вирізування частин транскрипту та їх зшивання називають сплайсингом, який є важливою складовою процесингу — формування зрілих іРНК з попередника.

Крім основних факторів спадковості, закладених у хромосомах, існують гени, які містяться в плазмідах і епісомах.

Плазміди (позахромосомні фактори спадковості, генетичні елементи, здатні стабільно існувати в клітині в автономному, не зв’язаному з хромосомами, стані. Плазміду, здатну об’єднуватися з хромосомою, називають епісомою. До плазмід відносять генетичний апарат клітинних органел (мітохондрій, пластид), а також групи зчеплення, які не є життєво важливими для клітин, що їх містять.

Епісоми (від грец. ері- і soma — тіло) — генетичні елементи, які можуть існувати в клітині або незалежно від хромосоми, або вбудовуватися в неї. Деякі епісоми при перенесенні в клітини інших видів мікроорганізмів втрачають здатність до взаємодії з хромосомами і стають типовими плазмідами, а деякі плазміди в певних умовах набувають властивостей епісом. Тому всі позахромосомні фактори спадковості часто об’єднують терміном плазміди.

Предыдущая статья:Ділення прокаріотичних клітин. Следующая статья:Механізм загибелі клітин.
page speed (0.0152 sec, direct)